Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: RICHARD A. ANTHES x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The spatial and temporal variability of the marine boundary layer (MBL) over the southeastern Pacific is studied using high-resolution radiosonde data from the VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx), lidar cloud measurements from the CALIOP instrument on the CALIPSO satellite, radio occultation (RO) data from the COSMIC satellites, and the ERA-Interim. The height of the MBL (MBLH) is estimated using three RO-derived parameters: the bending angle, refractivity, and water vapor pressure computed from the refractivity derived from a one-dimensional variational data inversion (1D-VAR) procedure. Two different diagnostic methods (minimum gradient and break point method) are compared. The results show that, although a negative bias in the refractivity exists as a result of superrefraction, the spatial and temporal variations of the MBLH determined from the RO observations are consistent with those from CALIOP and the radiosondes. The authors find that the minimum gradient in the RO bending angle gives the most accurate estimation of the MBL height.
Abstract
The spatial and temporal variability of the marine boundary layer (MBL) over the southeastern Pacific is studied using high-resolution radiosonde data from the VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx), lidar cloud measurements from the CALIOP instrument on the CALIPSO satellite, radio occultation (RO) data from the COSMIC satellites, and the ERA-Interim. The height of the MBL (MBLH) is estimated using three RO-derived parameters: the bending angle, refractivity, and water vapor pressure computed from the refractivity derived from a one-dimensional variational data inversion (1D-VAR) procedure. Two different diagnostic methods (minimum gradient and break point method) are compared. The results show that, although a negative bias in the refractivity exists as a result of superrefraction, the spatial and temporal variations of the MBLH determined from the RO observations are consistent with those from CALIOP and the radiosondes. The authors find that the minimum gradient in the RO bending angle gives the most accurate estimation of the MBL height.
Abstract
Global positioning system (GPS) radio occultation (RO) observations, first made of Earth’s atmosphere in 1995, have contributed in new ways to the understanding of the thermal structure and variability of the tropical upper troposphere–lower stratosphere (UTLS), an important component of the climate system. The UTLS plays an essential role in the global radiative balance, the exchange of water vapor, ozone, and other chemical constituents between the troposphere and stratosphere, and the transfer of energy from the troposphere to the stratosphere. With their high accuracy, precision, vertical resolution, and global coverage, RO observations are uniquely suited for studying the UTLS and a broad range of equatorial waves, including gravity waves, Kelvin waves, Rossby and mixed Rossby–gravity waves, and thermal tides. Because RO measurements are nearly unaffected by clouds, they also resolve the upper-level thermal structure of deep convection and tropical cyclones as well as volcanic clouds. Their low biases and stability from mission to mission make RO observations powerful tools for studying climate variability and trends, including the annual cycle and intraseasonal-to-interannual atmospheric modes of variability such as the quasi-biennial oscillation (QBO), Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO). These properties also make them useful for evaluating climate models and detection of small trends in the UTLS temperature, key indicators of climate change. This paper reviews the contributions of RO observations to the understanding of the three-dimensional structure of tropical UTLS phenomena and their variability over time scales ranging from hours to decades and longer.
Abstract
Global positioning system (GPS) radio occultation (RO) observations, first made of Earth’s atmosphere in 1995, have contributed in new ways to the understanding of the thermal structure and variability of the tropical upper troposphere–lower stratosphere (UTLS), an important component of the climate system. The UTLS plays an essential role in the global radiative balance, the exchange of water vapor, ozone, and other chemical constituents between the troposphere and stratosphere, and the transfer of energy from the troposphere to the stratosphere. With their high accuracy, precision, vertical resolution, and global coverage, RO observations are uniquely suited for studying the UTLS and a broad range of equatorial waves, including gravity waves, Kelvin waves, Rossby and mixed Rossby–gravity waves, and thermal tides. Because RO measurements are nearly unaffected by clouds, they also resolve the upper-level thermal structure of deep convection and tropical cyclones as well as volcanic clouds. Their low biases and stability from mission to mission make RO observations powerful tools for studying climate variability and trends, including the annual cycle and intraseasonal-to-interannual atmospheric modes of variability such as the quasi-biennial oscillation (QBO), Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO). These properties also make them useful for evaluating climate models and detection of small trends in the UTLS temperature, key indicators of climate change. This paper reviews the contributions of RO observations to the understanding of the three-dimensional structure of tropical UTLS phenomena and their variability over time scales ranging from hours to decades and longer.