Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Rafael L. Bras x
- Global Precipitation Measurement (GPM): Science and Applications x
- Refine by Access: All Content x
Abstract
Hydrological applications rely on the availability and quality of precipitation products, especially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products is complementary: model-based products exhibit high quality during cold seasons while satellite-based products are better during warm seasons. To explore the complementary behavior of the quality of the precipitation products, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°/hourly) precipitation estimates from the Weather Research and Forecasting (WRF) Model and from the version 5 Integrated Multisatellite Retrievals for GPM (IMERG) algorithm (i.e., early and final runs). The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States during August 2015–July 2017. Results show that the IMERG final-run estimates are nearly unbiased, while the IMERG early-run and the WRF estimates are positively biased. The WRF estimates exhibit high correlations with the reference data when the temperature falls below 280 K. The IMERG estimates, both early and final runs, do so when the temperature exceeds 280 K. Moreover, the complementary behavior of the WRF and the IMERG products conditioned on air temperature does not vary with either season or location.
Abstract
Hydrological applications rely on the availability and quality of precipitation products, especially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products is complementary: model-based products exhibit high quality during cold seasons while satellite-based products are better during warm seasons. To explore the complementary behavior of the quality of the precipitation products, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°/hourly) precipitation estimates from the Weather Research and Forecasting (WRF) Model and from the version 5 Integrated Multisatellite Retrievals for GPM (IMERG) algorithm (i.e., early and final runs). The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States during August 2015–July 2017. Results show that the IMERG final-run estimates are nearly unbiased, while the IMERG early-run and the WRF estimates are positively biased. The WRF estimates exhibit high correlations with the reference data when the temperature falls below 280 K. The IMERG estimates, both early and final runs, do so when the temperature exceeds 280 K. Moreover, the complementary behavior of the WRF and the IMERG products conditioned on air temperature does not vary with either season or location.
Abstract
This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).
Abstract
This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).