Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Ralph E. Kuehn x
  • Refine by Access: All Content x
Clear All Modify Search
Mark A. Vaughan
,
Kathleen A. Powell
,
David M. Winker
,
Chris A. Hostetler
,
Ralph E. Kuehn
,
William H. Hunt
,
Brian J. Getzewich
,
Stuart A. Young
,
Zhaoyan Liu
, and
Matthew J. McGill

Abstract

Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth’s atmosphere is critical in assessing the planet’s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

Full access
Ali H. Omar
,
David M. Winker
,
Mark A. Vaughan
,
Yongxiang Hu
,
Charles R. Trepte
,
Richard A. Ferrare
,
Kam-Pui Lee
,
Chris A. Hostetler
,
Chieko Kittaka
,
Raymond R. Rogers
,
Ralph E. Kuehn
, and
Zhaoyan Liu

Abstract

Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO aerosol types, the complementary distributions of integrated attenuated backscatter, and the volume depolarization ratio for each type. The aerosol-type distributions are further partitioned according to surface type (land/ocean) and detection resolution (5, 20, and 80 km) for optical and spatial context, because the optically thick layers are found most often at the smallest spatial resolution. Except for clean marine and polluted continental, all the aerosol types are found preferentially at the 80-km resolution. Nearly 80% of the smoke cases and 60% of the polluted dust cases are found over water, whereas dust and polluted continental cases are found over both land and water at comparable frequencies. Because the CALIPSO observables do not sufficiently constrain the determination of the aerosol, the surface type is used to augment the selection criteria. Distributions of the total attenuated color ratios show that the use of surface type in the typing algorithm does not result in abrupt and artificial changes in aerosol type or extinction.

Full access
Kathleen A. Powell
,
Chris A. Hostetler
,
Mark A. Vaughan
,
Kam-Pui Lee
,
Charles R. Trepte
,
Raymond R. Rogers
,
David M. Winker
,
Zhaoyan Liu
,
Ralph E. Kuehn
,
William H. Hunt
, and
Stuart A. Young

Abstract

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission was launched in April 2006 and has continuously acquired collocated multisensor observations of the spatial and optical properties of clouds and aerosols in the earth’s atmosphere. The primary payload aboard CALIPSO is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which makes range-resolved measurements of elastic backscatter at 532 and 1064 nm and linear depolarization ratios at 532 nm. CALIOP measurements are important in reducing uncertainties that currently limit understanding of the global climate system, and it is essential that these measurements be accurately calibrated. This work describes the procedures used to calibrate the 532-nm measurements acquired during the nighttime portions of the CALIPSO orbits. Accurate nighttime calibration of the 532-nm parallel-channel data is fundamental to the success of the CALIOP measurement scheme, because the nighttime calibration is used to infer calibration across the day side of the orbits and all other channels are calibrated relative to the 532-nm parallel channel. The theoretical basis of the molecular normalization technique as applied to space-based lidar measurements is reviewed, and a comprehensive overview of the calibration algorithm implementation is provided. Also included is a description of a data filtering procedure that detects and removes spurious high-energy events that would otherwise introduce large errors into the calibration. Error estimates are derived and comparisons are made to validation data acquired by the NASA airborne high–spectral resolution lidar. Similar analyses are also presented for the 532-nm perpendicular-channel calibration technique.

Full access