Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Richard E. Thomson x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Richard E. Thomson
and
Isaac V. Fine

Abstract

Estimates of mixed layer depth are important to a wide variety of oceanic investigations including upper-ocean productivity, air–sea exchange processes, and long-term climate change. In the absence of direct turbulent dissipation measurements, mixed layer depth is commonly derived from oceanic profile data using threshold, integral, least squares regression, or other proxy variables. The different methodologies often yield different values for mixed layer depth. In this paper, a new method—the split-and-merge (SM) method—is introduced for determining the depth of the surface mixed layer and associated upper-ocean structure from digital conductivity–temperature–depth (CTD) profiles. Two decades of CTD observations for the continental margin of British Columbia are used to validate the SM method and to examine differences in mixed layer depth estimates for the various computational techniques. On a profile-by-profile basis, close agreement is found between the SM and de facto standard threshold methods. However, depth estimates from these two methods can differ significantly from those obtained using the integral and least squares regression methods. The SM and threshold methods are found to approximate the “true” mixed layer depth whereas the integral and regression methods typically compute the depth of the underlying pycnocline. On a statistical basis, the marginally smaller standard errors for spatially averaged mixed layer depths for the SM method suggest a slight improvement in depth determination over threshold methods. This improvement, combined with the added ability of the SM method to delineate simultaneously ancillary features of the upper ocean (such as the depth and gradient of the permanent pycnocline), make it a valuable computational tool for characterizing the structure of the upper ocean.

Full access
Richard E. Thomson
,
Terrence A. Curran
,
M. Coreen Hamilton
, and
Ronald McFarlane

Abstract

We present an analysis of time-series measurements from a prototype fluorescence-quenching dissolved oxygen sensor moored for a six-day period in late March 1987 at 100 m depth in Saanich Inlet, British Columbia. Temporal variations in dissolved oxygen are shown to be consistent with concomitant variations in water properties obtained from a moored Aanderra RCM4 current meter and daily vertical profiles. Results suggest that fluorescence-based instrumentation have sufficient resolution and stability for a variety of mooring and profiling applications involving the measurement of dissolved oxygen concentration.

Full access
Alexander B. Rabinovich
,
Georgy V. Shevchenko
, and
Richard E. Thomson

Abstract

The authors describe a two-dimensional (vector) regressional model for examining the anisotropic response of ice drift and ocean current velocity (“drift velocity”) to surface wind forcing. Illustration of the method is limited to sea ice response. The principal mathematical and physical properties of the model are outlined, together with estimates of the “response matrices” and the corresponding “response ellipses” (drift velocity response to a unity wind velocity forcing). For each direction, ϕ, of the wind vector the method describes a corresponding “wind factor” α(ϕ) (relative drift speed) and “turning angle” θ(ϕ) (the angle between the drift velocity and wind vector). The major ellipse axis corresponds to the direction of the “effective wind” (ϕ = ϕ max) and the minor axis to the direction of the “noneffective” wind. The eigenvectors of the response matrix define wind directions that are the same as the wind-induced drift velocity directions. Depending on the water depth and offshore distance, six analytical cases are possible, ranging from rectilinear response ellipses near the coast to purely circular response ellipses in the open ocean. The model is used to examine ice drift along the western shelf of Sakhalin Island (Sea of Okhotsk). Responses derived from the vector regression (four parameter) method are less constrained and therefore more representative of wind-induced surface motions than those derived using the traditional complex transfer function (two parameter) approach.

Full access
Steven J. Bograd
,
Alexander B. Rabinovich
,
Richard E. Thomson
, and
A. Jane Eert

Abstract

The effects of reduced sampling schedules (duty cycles) on velocity statistics derived from satellite-tracked drifters in the northeast Pacific Ocean are investigated. Continuous segments of the drifter records (in which all available satellite positions fixes are recorded and processed by Service ARGOS) are degraded to match the standard duty cycle used in the World Ocean Circulation Experiment–Surface Velocity Program, in which there are 48 h of no data transmission followed by 24 h of received transmission (48–24 h). Also examined are duty cycles of 32–16 h and 16–8 h. It is found that the strong inertial motions prevalent in the drifter records result in significantly biased statistics derived from the degraded series. Reproduction of the original prime (mean and standard deviation) and rotary spectral statistics requires an interpolation that takes into account the oscillatory component of the drifter motions. Duty cycles having shorter but more frequent gaps (e.g., 16–8 h) are not sufficient to resolve the main features of the flow. The authors recommend that interpolations over duty cycle segments of drifter records be customized to account for the dominant modes of variability observed in available continuous segments.

Full access