Search Results
Abstract
Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While considerable research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models forecast TC genesis in the North Atlantic basin. This paper analyzes TC genesis forecasts from five global models [Environment Canada's Global Environment Multiscale Model (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF) global model, the Global Forecast System (GFS), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Met Office global model (UKMET)] over several seasons in the North Atlantic basin. Identifying TCs in the model is based on a combination of methods used previously in the literature and newly defined objective criteria. All model-indicated TCs are classified as a hit, false alarm, early genesis, or late genesis event. Missed events also are considered. Results show that the models' ability to predict TC genesis varies in time and space. Conditional probabilities when a model predicts genesis and more traditional performance metrics (e.g., critical success index) are calculated. The models are ranked among each other, and results show that the best-performing model varies from year to year. A spatial analysis of each model identifies preferred regions for genesis, and a temporal analysis indicates that model performance expectedly decreases as forecast hour (lead time) increases. Consensus forecasts show that the probability of genesis noticeably increases when multiple models predict the same genesis event. Overall, this study provides a climatology of objectively identified TC genesis forecasts in global models. The resulting verification statistics can be used operationally to help refine deterministic and probabilistic TC genesis forecasts and potentially improve the models examined.
Abstract
Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While considerable research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models forecast TC genesis in the North Atlantic basin. This paper analyzes TC genesis forecasts from five global models [Environment Canada's Global Environment Multiscale Model (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF) global model, the Global Forecast System (GFS), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Met Office global model (UKMET)] over several seasons in the North Atlantic basin. Identifying TCs in the model is based on a combination of methods used previously in the literature and newly defined objective criteria. All model-indicated TCs are classified as a hit, false alarm, early genesis, or late genesis event. Missed events also are considered. Results show that the models' ability to predict TC genesis varies in time and space. Conditional probabilities when a model predicts genesis and more traditional performance metrics (e.g., critical success index) are calculated. The models are ranked among each other, and results show that the best-performing model varies from year to year. A spatial analysis of each model identifies preferred regions for genesis, and a temporal analysis indicates that model performance expectedly decreases as forecast hour (lead time) increases. Consensus forecasts show that the probability of genesis noticeably increases when multiple models predict the same genesis event. Overall, this study provides a climatology of objectively identified TC genesis forecasts in global models. The resulting verification statistics can be used operationally to help refine deterministic and probabilistic TC genesis forecasts and potentially improve the models examined.
Abstract
This study discusses the development of the Hurricane Forecast Improvement Program (HFIP) Corrected Consensus Approach (HCCA) for tropical cyclone track and intensity forecasts. The HCCA technique relies on the forecasts of separate input models for both track and intensity and assigns unequal weighting coefficients based on a set of training forecasts. The HCCA track and intensity forecasts for 2015 were competitive with some of the best-performing operational guidance at the National Hurricane Center (NHC); HCCA was the most skillful model for Atlantic track forecasts through 48 h. Average track input model coefficients for the 2015 forecasts in both the Atlantic and eastern North Pacific basins were largest for the European Centre for Medium-Range Weather Forecasts (ECMWF) deterministic model and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) ensemble mean, but the relative magnitudes of the intensity coefficients were more varied. Input model sensitivity experiments conducted using retrospective HCCA forecasts from 2011 to 2015 indicate that the ECMWF deterministic model had the largest positive impact on the skill of the HCCA track forecasts in both basins. The most important input models for HCCA intensity forecasts are the Hurricane Weather Research and Forecasting (HWRF) Model and the Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone (COAMPS-TC) model initialized from the GFS. Several updates were incorporated into the HCCA formulation prior to the 2016 season. Verification results indicate HCCA continued to be a skillful model, especially for short-range (12–48 h) track forecasts in both basins.
Abstract
This study discusses the development of the Hurricane Forecast Improvement Program (HFIP) Corrected Consensus Approach (HCCA) for tropical cyclone track and intensity forecasts. The HCCA technique relies on the forecasts of separate input models for both track and intensity and assigns unequal weighting coefficients based on a set of training forecasts. The HCCA track and intensity forecasts for 2015 were competitive with some of the best-performing operational guidance at the National Hurricane Center (NHC); HCCA was the most skillful model for Atlantic track forecasts through 48 h. Average track input model coefficients for the 2015 forecasts in both the Atlantic and eastern North Pacific basins were largest for the European Centre for Medium-Range Weather Forecasts (ECMWF) deterministic model and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) ensemble mean, but the relative magnitudes of the intensity coefficients were more varied. Input model sensitivity experiments conducted using retrospective HCCA forecasts from 2011 to 2015 indicate that the ECMWF deterministic model had the largest positive impact on the skill of the HCCA track forecasts in both basins. The most important input models for HCCA intensity forecasts are the Hurricane Weather Research and Forecasting (HWRF) Model and the Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone (COAMPS-TC) model initialized from the GFS. Several updates were incorporated into the HCCA formulation prior to the 2016 season. Verification results indicate HCCA continued to be a skillful model, especially for short-range (12–48 h) track forecasts in both basins.
Abstract
The National Hurricane Center issues analyses, forecasts, and warnings over large parts of the North Atlantic and Pacific Oceans, and in support of many nearby countries. Advances in observational capabilities, operational numerical weather prediction, and forecaster tools and support systems over the past 15–20 yr have enabled the center to make more accurate forecasts, extend forecast lead times, and provide new products and services. Important limitations, however, persist. This paper discusses the current workings and state of the nation’s hurricane warning program, and highlights recent improvements and the enabling science and technology. It concludes with a look ahead at opportunities to address challenges.
Abstract
The National Hurricane Center issues analyses, forecasts, and warnings over large parts of the North Atlantic and Pacific Oceans, and in support of many nearby countries. Advances in observational capabilities, operational numerical weather prediction, and forecaster tools and support systems over the past 15–20 yr have enabled the center to make more accurate forecasts, extend forecast lead times, and provide new products and services. Important limitations, however, persist. This paper discusses the current workings and state of the nation’s hurricane warning program, and highlights recent improvements and the enabling science and technology. It concludes with a look ahead at opportunities to address challenges.