Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Richard J. Williams x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The Met Office Unified Model (MetUM) is known to produce too little total rainfall on average over India during the summer monsoon period, when assessed for multiyear climate simulations. We investigate how quickly this dry bias appears by assessing the 5-day operational forecasts produced by the MetUM for six different years. It is found that the MetUM shows a drying tendency across the five days of the forecasts, for all of the six years (which correspond to two different model versions). We then calculate each term in the moisture budget, for a region covering southern and central India, where the dry bias is worst in both climate simulations and weather forecasts. By looking at how the terms vary with forecast lead time, we are able to identify biases in the weather forecasts that have been previously identified in climate simulations using the same model, and we attempt to quantify how these biases lead to a reduction in total rainfall. In particular, an anticyclonic bias develops to the east of India throughout the forecast, and it has a complex effect on the moisture available over the peninsula, and a reduction in the wind speed into the west of the region appears after about 3 days, indicative of upstream effects. In addition, we find a new bias that the air advected from the west is too dry from very early in the forecast, and this has an important effect on the rainfall.
Abstract
The Met Office Unified Model (MetUM) is known to produce too little total rainfall on average over India during the summer monsoon period, when assessed for multiyear climate simulations. We investigate how quickly this dry bias appears by assessing the 5-day operational forecasts produced by the MetUM for six different years. It is found that the MetUM shows a drying tendency across the five days of the forecasts, for all of the six years (which correspond to two different model versions). We then calculate each term in the moisture budget, for a region covering southern and central India, where the dry bias is worst in both climate simulations and weather forecasts. By looking at how the terms vary with forecast lead time, we are able to identify biases in the weather forecasts that have been previously identified in climate simulations using the same model, and we attempt to quantify how these biases lead to a reduction in total rainfall. In particular, an anticyclonic bias develops to the east of India throughout the forecast, and it has a complex effect on the moisture available over the peninsula, and a reduction in the wind speed into the west of the region appears after about 3 days, indicative of upstream effects. In addition, we find a new bias that the air advected from the west is too dry from very early in the forecast, and this has an important effect on the rainfall.
Abstract
In the mid-twentieth century (1948–57), North America experienced a severe drought forced by cold tropical Pacific sea surface temperatures (SSTs). If these SSTs recurred, it would likely cause another drought, but in a world substantially warmer than the one in which the original event took place. We use a 20-member ensemble of the GISS climate model to investigate the drought impacts of a repetition of the mid-twentieth-century SST anomalies in a significantly warmer world. Using observed SSTs and mid-twentieth-century forcings (Hist-DRGHT), the ensemble reproduces the observed precipitation deficits during the cold season (October–March) across the Southwest, southern plains, and Mexico and during the warm season (April–September) in the southern plains and the Southeast. Under analogous SST forcing and enhanced warming (Fut-DRGHT, ≈3 K above preindustrial), cold season precipitation deficits are ameliorated in the Southwest and southern plains and intensified in the Southeast, whereas during the warm season precipitation deficits are enhanced across North America. This occurs primarily from greenhouse gas–forced trends in mean precipitation, rather than changes in SST teleconnections. Cold season runoff deficits in Fut-DRGHT are significantly amplified over the Southeast, but otherwise similar to Hist-DRGHT over the Southwest and southern plains. In the warm season, however, runoff and soil moisture deficits during Fut-DRGHT are significantly amplified across the southern United States, a consequence of enhanced precipitation deficits and increased evaporative losses due to warming. Our study highlights how internal variability and greenhouse gas–forced trends in hydroclimate are likely to interact over North America, including how changes in both precipitation and evaporative demand will affect future drought.
Abstract
In the mid-twentieth century (1948–57), North America experienced a severe drought forced by cold tropical Pacific sea surface temperatures (SSTs). If these SSTs recurred, it would likely cause another drought, but in a world substantially warmer than the one in which the original event took place. We use a 20-member ensemble of the GISS climate model to investigate the drought impacts of a repetition of the mid-twentieth-century SST anomalies in a significantly warmer world. Using observed SSTs and mid-twentieth-century forcings (Hist-DRGHT), the ensemble reproduces the observed precipitation deficits during the cold season (October–March) across the Southwest, southern plains, and Mexico and during the warm season (April–September) in the southern plains and the Southeast. Under analogous SST forcing and enhanced warming (Fut-DRGHT, ≈3 K above preindustrial), cold season precipitation deficits are ameliorated in the Southwest and southern plains and intensified in the Southeast, whereas during the warm season precipitation deficits are enhanced across North America. This occurs primarily from greenhouse gas–forced trends in mean precipitation, rather than changes in SST teleconnections. Cold season runoff deficits in Fut-DRGHT are significantly amplified over the Southeast, but otherwise similar to Hist-DRGHT over the Southwest and southern plains. In the warm season, however, runoff and soil moisture deficits during Fut-DRGHT are significantly amplified across the southern United States, a consequence of enhanced precipitation deficits and increased evaporative losses due to warming. Our study highlights how internal variability and greenhouse gas–forced trends in hydroclimate are likely to interact over North America, including how changes in both precipitation and evaporative demand will affect future drought.