Search Results
You are looking at 1 - 10 of 19 items for
- Author or Editor: Rick Lader x
- Refine by Access: All Content x
Abstract
Strengthened by polar amplification, Arctic warming provides direct evidence for global climate change. This analysis shows how Arctic surface air temperature (SAT) extremes have changed throughout time. Using ERA5, we demonstrate a pan-Arctic (>60°N) significant upward SAT trend of +0.62°C decade−1 since 1979. Due to this warming, the warmest days of each month in the 1980s to 1990s would be considered average today, while the present coldest days would be regarded as normal in the 1980s to 1990s. Over 1979–2021, there was a 2°C (or 7%) reduction of pan-Arctic SAT seasonal cycle, which resulted in warming of the cold SAT extremes by a factor of 2 relative to the SAT trend and dampened trends of the warm SAT extremes by roughly 25%. Since 1979, autumn has seen the strongest increasing trends in daily maximum and minimum temperatures, as well as counts of days with SAT above the 90th percentile and decreasing trends in counts of days with SAT below the 10th percentile, consistent with rapid Arctic sea ice decline and enhanced air–ocean heat fluxes. The modulated SAT seasonal signal has a significant impact on the timing of extremely strong monthly cold and warm spells. The dampening of the SAT seasonal fluctuations is likely to continue to increase as more sea ice melts and upper-ocean warming persists. As a result, the Arctic winter cold SAT extremes may continue to exhibit a faster rate of change than that of the summer warm SAT extremes as the Arctic continues to warm.
Significance Statement
As a result of global warming, the Arctic Ocean’s sea ice is receding, exposing more and more areas to air–sea interactions. This reduces the range of seasonal changes in Arctic surface air temperatures (SAT). Since 1979, the reduced seasonal SAT signal has decreased the trend of warm SAT extremes by 25% over the background warming trend and doubled the trend of cold SAT extremes relative to SAT trends. A substantial number of warm and cold spells would not have been identified as exceptional if the reduction of the Arctic SAT seasonal amplitudes had not been taken into account. As the Arctic continues to warm and sea ice continues to diminish, seasonal SAT fluctuations will become more dampened, with the rate of decreasing winter SAT extremes exceeding the rate of increasing summer SAT extremes.
Abstract
Strengthened by polar amplification, Arctic warming provides direct evidence for global climate change. This analysis shows how Arctic surface air temperature (SAT) extremes have changed throughout time. Using ERA5, we demonstrate a pan-Arctic (>60°N) significant upward SAT trend of +0.62°C decade−1 since 1979. Due to this warming, the warmest days of each month in the 1980s to 1990s would be considered average today, while the present coldest days would be regarded as normal in the 1980s to 1990s. Over 1979–2021, there was a 2°C (or 7%) reduction of pan-Arctic SAT seasonal cycle, which resulted in warming of the cold SAT extremes by a factor of 2 relative to the SAT trend and dampened trends of the warm SAT extremes by roughly 25%. Since 1979, autumn has seen the strongest increasing trends in daily maximum and minimum temperatures, as well as counts of days with SAT above the 90th percentile and decreasing trends in counts of days with SAT below the 10th percentile, consistent with rapid Arctic sea ice decline and enhanced air–ocean heat fluxes. The modulated SAT seasonal signal has a significant impact on the timing of extremely strong monthly cold and warm spells. The dampening of the SAT seasonal fluctuations is likely to continue to increase as more sea ice melts and upper-ocean warming persists. As a result, the Arctic winter cold SAT extremes may continue to exhibit a faster rate of change than that of the summer warm SAT extremes as the Arctic continues to warm.
Significance Statement
As a result of global warming, the Arctic Ocean’s sea ice is receding, exposing more and more areas to air–sea interactions. This reduces the range of seasonal changes in Arctic surface air temperatures (SAT). Since 1979, the reduced seasonal SAT signal has decreased the trend of warm SAT extremes by 25% over the background warming trend and doubled the trend of cold SAT extremes relative to SAT trends. A substantial number of warm and cold spells would not have been identified as exceptional if the reduction of the Arctic SAT seasonal amplitudes had not been taken into account. As the Arctic continues to warm and sea ice continues to diminish, seasonal SAT fluctuations will become more dampened, with the rate of decreasing winter SAT extremes exceeding the rate of increasing summer SAT extremes.
Abstract
Climate warming is expected to disproportionately affect crop yields in the southern United States due to excessive heat stress, while presenting new farming opportunities through a longer growing season farther north. Few studies have investigated the impact of this warming on agro-climate indices that link meteorological data with important field dates in northern regions. This study employs regional dynamical downscaling using the Weather Research and Forecasting (WRF) Model to assess changes in growing season length (GSL), spring planting dates, and occurrences of plant heat stress (PHS) for five regions in Alaska. Differences between future representative concentration pathway 8.5 (RCP8.5; 2011–40, 2041–70, 2071–2100) and historical (1981–2010) periods are obtained using boundary forcing from the Geophysical Fluid Dynamics Laboratory Climate Model, version 3, and the NCAR Community Climate System Model, version 4. The model output is bias corrected using ERA-Interim. Median GSL shows increases of 48–87 days by 2071–2100, with the largest changes in northern Alaska. Similarly, by 2071–2100, planting dates advance 2–4 weeks, and PHS days increase from near 0 to 5–10 instances per summer in the hottest areas. The largest GSL changes occur in the mid- (2041–70) and late century (2071–2100), when a warming signal emerges from the historical interannual variability. These periods coincide with the greatest divergence of the RCPs, suggesting that near-term decision-making may affect substantial future changes. Early-century (2011–40) projections show median GSL increases of 8–27 days, which is close to the historical standard deviation of GSL. Thus, internal variability will remain an important source of uncertainty into the midcentury, despite a trend for longer growing seasons.
Abstract
Climate warming is expected to disproportionately affect crop yields in the southern United States due to excessive heat stress, while presenting new farming opportunities through a longer growing season farther north. Few studies have investigated the impact of this warming on agro-climate indices that link meteorological data with important field dates in northern regions. This study employs regional dynamical downscaling using the Weather Research and Forecasting (WRF) Model to assess changes in growing season length (GSL), spring planting dates, and occurrences of plant heat stress (PHS) for five regions in Alaska. Differences between future representative concentration pathway 8.5 (RCP8.5; 2011–40, 2041–70, 2071–2100) and historical (1981–2010) periods are obtained using boundary forcing from the Geophysical Fluid Dynamics Laboratory Climate Model, version 3, and the NCAR Community Climate System Model, version 4. The model output is bias corrected using ERA-Interim. Median GSL shows increases of 48–87 days by 2071–2100, with the largest changes in northern Alaska. Similarly, by 2071–2100, planting dates advance 2–4 weeks, and PHS days increase from near 0 to 5–10 instances per summer in the hottest areas. The largest GSL changes occur in the mid- (2041–70) and late century (2071–2100), when a warming signal emerges from the historical interannual variability. These periods coincide with the greatest divergence of the RCPs, suggesting that near-term decision-making may affect substantial future changes. Early-century (2011–40) projections show median GSL increases of 8–27 days, which is close to the historical standard deviation of GSL. Thus, internal variability will remain an important source of uncertainty into the midcentury, despite a trend for longer growing seasons.
Abstract
Parts of southeast Alaska experienced record drought in 2019, followed by record daily precipitation in late 2020 with substantial impacts to human health and safety, energy resources, and fisheries. To help ascertain whether these types of events can be expected more frequently, this study investigated observed trends and projected changes of hydroclimatic extremes indices across southeast Alaska, including measures of precipitation variability, seasonality, magnitude, and type. Observations indicated mixed tendencies of interannual precipitation variability, but there were consistent trends toward warmer and wetter conditions. Projected changes were assessed using dynamically downscaled climate model simulations at 4-km spatial resolution from 2031 to 2060 that were compared with a historical period from 1981 to 2010 using two models—NCAR CCSM4 and GFDL CM3. Consistent directional changes were found for five of the analyzed indices. The CCSM indicated increased maximum 1-day precipitation (RX1; 12.6%), increased maximum consecutive 5-day precipitation (RX5; 7.4%), longer periods of consecutive dry days (CDD; 11.9%), fewer snow cover days (SNC; −21.4%) and lower snow fraction (SNF; −24.4%); for GFDL these changes were 19.8% for RX1, 16.0% for RX5, 20.1% for CDD, −21.9% for SNC, and −26.5% for SNF. Although both models indicated substantial snow losses, they also projected annual snowfall increases at high elevations; this occurred above 1500 m for CCSM and above 2500 m for GFDL. Significance testing was assessed at the 95% confidence level using Theil–Sen’s slope estimates for the observed time series and the Wilcoxon–Mann–Whitney U test for projected changes of the hydroclimatic extremes indices relative to their historical distributions.
Abstract
Parts of southeast Alaska experienced record drought in 2019, followed by record daily precipitation in late 2020 with substantial impacts to human health and safety, energy resources, and fisheries. To help ascertain whether these types of events can be expected more frequently, this study investigated observed trends and projected changes of hydroclimatic extremes indices across southeast Alaska, including measures of precipitation variability, seasonality, magnitude, and type. Observations indicated mixed tendencies of interannual precipitation variability, but there were consistent trends toward warmer and wetter conditions. Projected changes were assessed using dynamically downscaled climate model simulations at 4-km spatial resolution from 2031 to 2060 that were compared with a historical period from 1981 to 2010 using two models—NCAR CCSM4 and GFDL CM3. Consistent directional changes were found for five of the analyzed indices. The CCSM indicated increased maximum 1-day precipitation (RX1; 12.6%), increased maximum consecutive 5-day precipitation (RX5; 7.4%), longer periods of consecutive dry days (CDD; 11.9%), fewer snow cover days (SNC; −21.4%) and lower snow fraction (SNF; −24.4%); for GFDL these changes were 19.8% for RX1, 16.0% for RX5, 20.1% for CDD, −21.9% for SNC, and −26.5% for SNF. Although both models indicated substantial snow losses, they also projected annual snowfall increases at high elevations; this occurred above 1500 m for CCSM and above 2500 m for GFDL. Significance testing was assessed at the 95% confidence level using Theil–Sen’s slope estimates for the observed time series and the Wilcoxon–Mann–Whitney U test for projected changes of the hydroclimatic extremes indices relative to their historical distributions.
Abstract
Climate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.
Abstract
Climate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.
Abstract
Alaska is experiencing effects of global climate change that are due, in large part, to the positive feedback mechanisms associated with polar amplification. The major risk factors include loss of sea ice and glaciers, thawing permafrost, increased wildfires, and ocean acidification. Reanalyses, integral to understanding mechanisms of Alaska’s past climate and to helping to calibrate modeling efforts, are based on the output of weather forecast models that assimilate observations. This study evaluates temperature and precipitation from five reanalyses at monthly and daily time scales for the period 1979–2009. Monthly data are evaluated spatially at grid points and for six climate zones in Alaska. In addition, daily maximum temperature, minimum temperature, and precipitation from reanalyses are compared with meteorological-station data at six locations. The reanalyses evaluated in this study include the NCEP–NCAR reanalysis (R1), North American Regional Reanalysis (NARR), Climate Forecast System Reanalysis (CFSR), ERA-Interim, and the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Maps of seasonal bias and standard deviation, constructed from monthly data, show how the reanalyses agree with observations spatially. Cross correlations between the monthly gridded and daily station time series are computed to provide a measure of confidence that data users can assume when selecting reanalysis data in a region without many surface observations. A review of natural hazards in Alaska indicates that MERRA is the top reanalysis for wildfire and interior-flooding applications. CFSR is the recommended reanalysis for North Slope coastal erosion issues and, along with ERA-Interim, for heavy precipitation in southeastern Alaska.
Abstract
Alaska is experiencing effects of global climate change that are due, in large part, to the positive feedback mechanisms associated with polar amplification. The major risk factors include loss of sea ice and glaciers, thawing permafrost, increased wildfires, and ocean acidification. Reanalyses, integral to understanding mechanisms of Alaska’s past climate and to helping to calibrate modeling efforts, are based on the output of weather forecast models that assimilate observations. This study evaluates temperature and precipitation from five reanalyses at monthly and daily time scales for the period 1979–2009. Monthly data are evaluated spatially at grid points and for six climate zones in Alaska. In addition, daily maximum temperature, minimum temperature, and precipitation from reanalyses are compared with meteorological-station data at six locations. The reanalyses evaluated in this study include the NCEP–NCAR reanalysis (R1), North American Regional Reanalysis (NARR), Climate Forecast System Reanalysis (CFSR), ERA-Interim, and the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Maps of seasonal bias and standard deviation, constructed from monthly data, show how the reanalyses agree with observations spatially. Cross correlations between the monthly gridded and daily station time series are computed to provide a measure of confidence that data users can assume when selecting reanalysis data in a region without many surface observations. A review of natural hazards in Alaska indicates that MERRA is the top reanalysis for wildfire and interior-flooding applications. CFSR is the recommended reanalysis for North Slope coastal erosion issues and, along with ERA-Interim, for heavy precipitation in southeastern Alaska.
Abstract
Warming temperatures across southeast Alaska are affecting the region’s energy and transportation sectors, marine ecosystems, and forest health. More frequent above-freezing temperatures lead a transition from snow- to rain-dominant precipitation regimes, accelerating glacial mass balance loss and a leading to a greater risk for warm-season drought. Southeast Alaska has steep topographical gradients, which necessitate the use of downscaled climate information to study historical and projected periods. This study used regional dynamical downscaling at 4-km spatial resolution with the Weather Research and Forecasting Model to assess historical (1981–2010) and projected (2031–60) climate states for southeast Alaska. These simulations were driven by one reanalysis (i.e., the Climate Forecast System Reanalysis) and two climate models (i.e., the Geophysical Fluid Dynamics Laboratory Climate Model, version 3, and the NCAR Community Climate System Model, version 4), which each included a historical simulation and a projected simulation. The future simulations used the representative concentration pathway 8.5 emissions scenario. Bias-corrected projections (2031–60 minus 1981–2010) indicated seasonal warming of 1°–3°C, increased precipitation during autumn (4%–12%) and winter (7%–12%), and decreased snowfall in all seasons (up to 60% in autumn). The average number of days annually with a minimum temperature below freezing dropped by more than 30. The average annual maximum consecutive 3-day precipitation amounts increased by 11%–16%, but analogous extreme snowfall amounts dropped by 5%–11%. The most substantial snow losses occurred at low-elevation and coastal locations; at many high elevations (e.g., above 1000 m), extreme snowfall amounts increased.
Abstract
Warming temperatures across southeast Alaska are affecting the region’s energy and transportation sectors, marine ecosystems, and forest health. More frequent above-freezing temperatures lead a transition from snow- to rain-dominant precipitation regimes, accelerating glacial mass balance loss and a leading to a greater risk for warm-season drought. Southeast Alaska has steep topographical gradients, which necessitate the use of downscaled climate information to study historical and projected periods. This study used regional dynamical downscaling at 4-km spatial resolution with the Weather Research and Forecasting Model to assess historical (1981–2010) and projected (2031–60) climate states for southeast Alaska. These simulations were driven by one reanalysis (i.e., the Climate Forecast System Reanalysis) and two climate models (i.e., the Geophysical Fluid Dynamics Laboratory Climate Model, version 3, and the NCAR Community Climate System Model, version 4), which each included a historical simulation and a projected simulation. The future simulations used the representative concentration pathway 8.5 emissions scenario. Bias-corrected projections (2031–60 minus 1981–2010) indicated seasonal warming of 1°–3°C, increased precipitation during autumn (4%–12%) and winter (7%–12%), and decreased snowfall in all seasons (up to 60% in autumn). The average number of days annually with a minimum temperature below freezing dropped by more than 30. The average annual maximum consecutive 3-day precipitation amounts increased by 11%–16%, but analogous extreme snowfall amounts dropped by 5%–11%. The most substantial snow losses occurred at low-elevation and coastal locations; at many high elevations (e.g., above 1000 m), extreme snowfall amounts increased.
Abstract
Alaska experienced record-setting warmth during the 2015/16 cold season (October–April). Statewide average temperatures exceeded the period-of-record mean by more than 4°C over the 7-month cold season and by more than 6°C over the 4-month late-winter period, January–April. The record warmth raises two questions: 1) Why was Alaska so warm during the 2015/16 cold season? 2) At what point in the future might this warmth become typical if greenhouse warming continues? On the basis of circulation analogs computed from sea level pressure and 850-hPa geopotential height fields, the atmospheric circulation explains less than half of the anomalous warmth. The warming signal forced by greenhouse gases in climate models accounts for about 1°C of the anomalous warmth. A factor that is consistent with the seasonal and spatial patterns of the warmth is the anomalous surface state. The surface anomalies include 1) above-normal ocean surface temperatures and below-normal sea ice coverage in the surrounding seas from which air advects into Alaska and 2) the deficient snowpack over Alaska itself. The location of the maximum of anomalous warmth over Alaska and the late-winter–early-spring increase of the anomalous warmth unexplained by the atmospheric circulation implicates snow cover and its albedo effect, which is supported by observational measurements in the boreal forest and tundra biomes. Climate model simulations indicate that warmth of this magnitude will become the norm by the 2050s if greenhouse gas emissions follow their present scenario.
Abstract
Alaska experienced record-setting warmth during the 2015/16 cold season (October–April). Statewide average temperatures exceeded the period-of-record mean by more than 4°C over the 7-month cold season and by more than 6°C over the 4-month late-winter period, January–April. The record warmth raises two questions: 1) Why was Alaska so warm during the 2015/16 cold season? 2) At what point in the future might this warmth become typical if greenhouse warming continues? On the basis of circulation analogs computed from sea level pressure and 850-hPa geopotential height fields, the atmospheric circulation explains less than half of the anomalous warmth. The warming signal forced by greenhouse gases in climate models accounts for about 1°C of the anomalous warmth. A factor that is consistent with the seasonal and spatial patterns of the warmth is the anomalous surface state. The surface anomalies include 1) above-normal ocean surface temperatures and below-normal sea ice coverage in the surrounding seas from which air advects into Alaska and 2) the deficient snowpack over Alaska itself. The location of the maximum of anomalous warmth over Alaska and the late-winter–early-spring increase of the anomalous warmth unexplained by the atmospheric circulation implicates snow cover and its albedo effect, which is supported by observational measurements in the boreal forest and tundra biomes. Climate model simulations indicate that warmth of this magnitude will become the norm by the 2050s if greenhouse gas emissions follow their present scenario.
Abstract
The European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has been downscaled using a regional model covering Alaska at 20-km spatial and hourly temporal resolution for 1979–2013. Stakeholders can utilize these enhanced-resolution data to investigate climate- and weather-related phenomena in Alaska. Temperature and precipitation are analyzed and compared among ERA-Interim, WRF Model downscaling, and in situ observations. Relative to ERA-Interim, the downscaling is shown to improve the spatial representation of temperature and precipitation around Alaska’s complex terrain. Improvements include increased winter and decreased summer higher-elevation downscaled seasonal average temperatures. Precipitation is also enhanced over higher elevations in all seasons relative to the reanalysis. These spatial distributions of temperature and precipitation are consistent with the few available gridded observational datasets that account for topography. The downscaled precipitation generally exceeds observationally derived estimates in all seasons over mainland Alaska, and it is less than observations in the southeast. Temperature biases tended to be more mixed, and the downscaling reduces absolute bias at higher elevations, especially in winter. Careful selection of data for local site analysis from the downscaling can help to reduce these biases, especially those due to inconsistencies in elevation. Improved meteorological station coverage at higher elevations will be necessary to better evaluate gridded downscaled products in Alaska because biases vary and may even change sign with elevation.
Abstract
The European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has been downscaled using a regional model covering Alaska at 20-km spatial and hourly temporal resolution for 1979–2013. Stakeholders can utilize these enhanced-resolution data to investigate climate- and weather-related phenomena in Alaska. Temperature and precipitation are analyzed and compared among ERA-Interim, WRF Model downscaling, and in situ observations. Relative to ERA-Interim, the downscaling is shown to improve the spatial representation of temperature and precipitation around Alaska’s complex terrain. Improvements include increased winter and decreased summer higher-elevation downscaled seasonal average temperatures. Precipitation is also enhanced over higher elevations in all seasons relative to the reanalysis. These spatial distributions of temperature and precipitation are consistent with the few available gridded observational datasets that account for topography. The downscaled precipitation generally exceeds observationally derived estimates in all seasons over mainland Alaska, and it is less than observations in the southeast. Temperature biases tended to be more mixed, and the downscaling reduces absolute bias at higher elevations, especially in winter. Careful selection of data for local site analysis from the downscaling can help to reduce these biases, especially those due to inconsistencies in elevation. Improved meteorological station coverage at higher elevations will be necessary to better evaluate gridded downscaled products in Alaska because biases vary and may even change sign with elevation.
Abstract
Lightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends has been challenging because of changes in the observational network, but understanding historical and possible future changes in lightning activity is important for fire management planning. Dynamically downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was found to be a key predictor of weekly lightning activity through multiple regression analysis, along with additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates of historical June–July lightning since 1979 showed increasing but lower-magnitude trends than the observed record, derived from the highly heterogeneous lightning sensor network, over the same period throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity over the same June–July season and geographic region by the end of the twenty-first century. Such a substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska because of increased opportunities for ignitions, although the final outcome also depends on fire weather conditions and fuels.
Abstract
Lightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends has been challenging because of changes in the observational network, but understanding historical and possible future changes in lightning activity is important for fire management planning. Dynamically downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was found to be a key predictor of weekly lightning activity through multiple regression analysis, along with additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates of historical June–July lightning since 1979 showed increasing but lower-magnitude trends than the observed record, derived from the highly heterogeneous lightning sensor network, over the same period throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity over the same June–July season and geographic region by the end of the twenty-first century. Such a substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska because of increased opportunities for ignitions, although the final outcome also depends on fire weather conditions and fuels.
Abstract
The ice formed by cold-season rainfall or rain on snow (ROS) has striking impacts on the economy and ecology of Alaska. An understanding of the atmospheric drivers of ROS events is required to better predict them and plan for environmental change. The spatially/temporally sparse network of stations in Alaska makes studying such events challenging, and gridded reanalysis or remote sensing products are necessary to fill the gaps. Recently developed dynamically downscaled climate data provide a new suite of high-resolution variables for investigating historical and projected ROS events across all of Alaska from 1979 to 2100. The dynamically downscaled reanalysis data of ERA-Interim replicated the seasonal patterns of ROS events but tended to produce more rain events than in station observations. However, dynamical downscaling reduced the bias toward more rain events in the coarse reanalysis. ROS occurred most frequently over southwestern and southern coastal regions. Extreme events with the heaviest rainfall generally coincided with anomalous high pressure centered to the south/southeast of the locations receiving the event and warm-air advection from the resulting southwesterly wind flow. ROS events were projected to increase in frequency overall and for extremes across most of the region but were expected to decline over southwestern/southern Alaska. Increases in frequency were projected as a result of more frequent winter rainfall, but the number of ROS events may ultimately decline in some areas as a result of temperatures rising above the freezing threshold. These projected changes in ROS can significantly affect wildlife, vegetation, and human activities across the Alaska landscape.
Abstract
The ice formed by cold-season rainfall or rain on snow (ROS) has striking impacts on the economy and ecology of Alaska. An understanding of the atmospheric drivers of ROS events is required to better predict them and plan for environmental change. The spatially/temporally sparse network of stations in Alaska makes studying such events challenging, and gridded reanalysis or remote sensing products are necessary to fill the gaps. Recently developed dynamically downscaled climate data provide a new suite of high-resolution variables for investigating historical and projected ROS events across all of Alaska from 1979 to 2100. The dynamically downscaled reanalysis data of ERA-Interim replicated the seasonal patterns of ROS events but tended to produce more rain events than in station observations. However, dynamical downscaling reduced the bias toward more rain events in the coarse reanalysis. ROS occurred most frequently over southwestern and southern coastal regions. Extreme events with the heaviest rainfall generally coincided with anomalous high pressure centered to the south/southeast of the locations receiving the event and warm-air advection from the resulting southwesterly wind flow. ROS events were projected to increase in frequency overall and for extremes across most of the region but were expected to decline over southwestern/southern Alaska. Increases in frequency were projected as a result of more frequent winter rainfall, but the number of ROS events may ultimately decline in some areas as a result of temperatures rising above the freezing threshold. These projected changes in ROS can significantly affect wildlife, vegetation, and human activities across the Alaska landscape.