Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Rita Roberts x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
Dual-Doppler radar analyses of three tornadoes associated with a multicellular line of storms are presented. The F2–F3 intensity tornadoes occurred on 15 June 1988 near Denver, Colorado, during the Terminal Doppler Weather Radar (TDWR) Project. These tornadoes developed from misocyclones of no larger than 2 km in diameter that formed along the collision of two surface outflows. The misocyclones were observed to build in height and intensify with time, coincident with rapid storm growth overhead. All three misocyclones were clearly associated with the maximum storm updrafts. Downdrafts and associated outflows did not play a role in the formation of one of the tornadoes, but may have contributed to the genesis of the other two tornadoes. It is clear that a downdraft is not a necessary condition for the formation of a nonsupercell tornado, but when present, likely plays a role in determining the timing and intensity of the tornado. This is achieved by the downdraft and outflow causing an increase in the magnitude of the low-level convergence and updraft.
Vertical vorticity production terms were examined for each tornado. Given the close proximity in time and space of the tornadoes, there was surprising variability in the magnitudes and locations of the stretching, tilting, and advection terms for each tornado. In general, however, the predominant contribution to positive vertical vorticity and tornadogenesis was from vorticity stretching in the 0.2–2.0-km layer resulting from intensification of low-level convergence and storm updrafts. Above 2.0 km, increased vertical vorticity resulted from a redistribution of low-level vorticity vertically. Small areas of positive vorticity tilting were found within the regions of large streamwise vorticity just prior to tornadogenesis but not during the formative stages of the mesocyclones, amplifying the already strong contributions to tornadogenesis from vertical stretching of the vortices.
The spatial resolution of the data presented here is as high as any documented in tornado literature. However, limitations in what features are actually resolvable became strikingly apparent and are discussed in the paper.
Abstract
Dual-Doppler radar analyses of three tornadoes associated with a multicellular line of storms are presented. The F2–F3 intensity tornadoes occurred on 15 June 1988 near Denver, Colorado, during the Terminal Doppler Weather Radar (TDWR) Project. These tornadoes developed from misocyclones of no larger than 2 km in diameter that formed along the collision of two surface outflows. The misocyclones were observed to build in height and intensify with time, coincident with rapid storm growth overhead. All three misocyclones were clearly associated with the maximum storm updrafts. Downdrafts and associated outflows did not play a role in the formation of one of the tornadoes, but may have contributed to the genesis of the other two tornadoes. It is clear that a downdraft is not a necessary condition for the formation of a nonsupercell tornado, but when present, likely plays a role in determining the timing and intensity of the tornado. This is achieved by the downdraft and outflow causing an increase in the magnitude of the low-level convergence and updraft.
Vertical vorticity production terms were examined for each tornado. Given the close proximity in time and space of the tornadoes, there was surprising variability in the magnitudes and locations of the stretching, tilting, and advection terms for each tornado. In general, however, the predominant contribution to positive vertical vorticity and tornadogenesis was from vorticity stretching in the 0.2–2.0-km layer resulting from intensification of low-level convergence and storm updrafts. Above 2.0 km, increased vertical vorticity resulted from a redistribution of low-level vorticity vertically. Small areas of positive vorticity tilting were found within the regions of large streamwise vorticity just prior to tornadogenesis but not during the formative stages of the mesocyclones, amplifying the already strong contributions to tornadogenesis from vertical stretching of the vortices.
The spatial resolution of the data presented here is as high as any documented in tornado literature. However, limitations in what features are actually resolvable became strikingly apparent and are discussed in the paper.
Abstract
The enhanced observation period during the HIGHWAY field campaign in East Africa provided the opportunity to obtain continuous ground-based radar observations over the Lake Victoria basin. This provided insight into thunderstorm initiation processes and thunderstorm evolution. This insight is significant for it can lead to nowcasting thunderstorms over Lake Victoria, which is particularly important because of the >200 000 fishers using the lake daily and the extremely high number of drownings resulting from capsized boats caused by large waves and high winds from thunderstorms. Radar data from the south shoreline of Lake Victoria made it possible to observe thunderstorm activity over the entire lake. Unexpectedly the radar returns from high concentration of insects over the lake made it possible for the radar to observe boundary layer convergence lines. With this information a radar-trained forecaster could provide nowcasts of severe storm locations and by using extrapolation techniques provide nowcasts of their future location. In addition, rules for forecasting the timing and extent of nighttime thunderstorm activity over the lake based on radar monitoring of earlier activity along the northeast land/lake region are provided. While there are many obstacles to overcome, it is hoped that in the near future this possible life-saving information can be provided to Lake Victoria boaters.
Significance Statement
Radar data from the south shore of Lake Victoria has enabled new understanding of thunderstorm initiation and evolution over the lake. This understanding provides the potential to nowcast thunderstorms over Lake Victoria. This is particularly important because of the extremely high number of drownings that occur over the lake that result from capsized boats caused by large waves and high winds from thunderstorms. Radar-based rules are provided for forecasting and nowcasting the timing and severity of Lake Victoria thunderstorms.
Abstract
The enhanced observation period during the HIGHWAY field campaign in East Africa provided the opportunity to obtain continuous ground-based radar observations over the Lake Victoria basin. This provided insight into thunderstorm initiation processes and thunderstorm evolution. This insight is significant for it can lead to nowcasting thunderstorms over Lake Victoria, which is particularly important because of the >200 000 fishers using the lake daily and the extremely high number of drownings resulting from capsized boats caused by large waves and high winds from thunderstorms. Radar data from the south shoreline of Lake Victoria made it possible to observe thunderstorm activity over the entire lake. Unexpectedly the radar returns from high concentration of insects over the lake made it possible for the radar to observe boundary layer convergence lines. With this information a radar-trained forecaster could provide nowcasts of severe storm locations and by using extrapolation techniques provide nowcasts of their future location. In addition, rules for forecasting the timing and extent of nighttime thunderstorm activity over the lake based on radar monitoring of earlier activity along the northeast land/lake region are provided. While there are many obstacles to overcome, it is hoped that in the near future this possible life-saving information can be provided to Lake Victoria boaters.
Significance Statement
Radar data from the south shore of Lake Victoria has enabled new understanding of thunderstorm initiation and evolution over the lake. This understanding provides the potential to nowcast thunderstorms over Lake Victoria. This is particularly important because of the extremely high number of drownings that occur over the lake that result from capsized boats caused by large waves and high winds from thunderstorms. Radar-based rules are provided for forecasting and nowcasting the timing and severity of Lake Victoria thunderstorms.
Abstract
The data-rich International H2O Project (IHOP_2002) experiment is used to study convective storm initiation and subsequent evolution for all days of the experiment. Initiation episodes were almost evenly divided between those triggered along surface-based convergence lines and elevated initiation episodes that showed no associated surface convergence. The elevated episodes occurred mostly at night, and the surface-based episodes occurred during the afternoon and evening. Surface-based initiations were mostly associated with synoptic fronts and gust fronts and less so with drylines and bores. Elevated initiations were frequently associated with observable convergent or confluent features in the Rapid Update Cycle (RUC) wind analysis fields between 900 and 600 hPa. The RUC10 3-h forecast of the precipitation initiation episodes were correct 44% of the time, allowing a tolerance of 250 km in space and for the forecast being early by one period. However, the accuracy was closely tied to the scale of the initiation mechanism, being highest for synoptic frontal features and lowest for gust fronts.
Gust fronts were a primary feature influencing the evolution of the initiated storms. Almost one-half of the storm complexes associated with initiation episodes did not produce surface gust fronts. Storm systems that did not produce gust fronts most often lived 2–6 h while those that did frequently lived at least 8 h. The largest and longest-lived storm complexes had well-developed intense gust fronts that influenced the propagation of the storm system. The RUC10 was generally not successful in forecasting the evolution and motion of the larger, more intense storm complexes; presumably this was because it did not produce strong gust fronts.
Implications for forecasting convective storm initiation and evolution are discussed.
Abstract
The data-rich International H2O Project (IHOP_2002) experiment is used to study convective storm initiation and subsequent evolution for all days of the experiment. Initiation episodes were almost evenly divided between those triggered along surface-based convergence lines and elevated initiation episodes that showed no associated surface convergence. The elevated episodes occurred mostly at night, and the surface-based episodes occurred during the afternoon and evening. Surface-based initiations were mostly associated with synoptic fronts and gust fronts and less so with drylines and bores. Elevated initiations were frequently associated with observable convergent or confluent features in the Rapid Update Cycle (RUC) wind analysis fields between 900 and 600 hPa. The RUC10 3-h forecast of the precipitation initiation episodes were correct 44% of the time, allowing a tolerance of 250 km in space and for the forecast being early by one period. However, the accuracy was closely tied to the scale of the initiation mechanism, being highest for synoptic frontal features and lowest for gust fronts.
Gust fronts were a primary feature influencing the evolution of the initiated storms. Almost one-half of the storm complexes associated with initiation episodes did not produce surface gust fronts. Storm systems that did not produce gust fronts most often lived 2–6 h while those that did frequently lived at least 8 h. The largest and longest-lived storm complexes had well-developed intense gust fronts that influenced the propagation of the storm system. The RUC10 was generally not successful in forecasting the evolution and motion of the larger, more intense storm complexes; presumably this was because it did not produce strong gust fronts.
Implications for forecasting convective storm initiation and evolution are discussed.