Search Results

You are looking at 1 - 10 of 16 items for :

  • Author or Editor: Robert H. Weisberg x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Robert H. Weisberg

Abstract

Atmospherically driven flow in the Providence River (a partially mixed estuary) has been examined using a 51-day velocity record measured 2 m from the bottom. Velocity fluctuations at time scales between the steady-state gravitational convection and the tidal oscillations were large and almost exclusively wind-induced. The mean and variance of the velocity component lying along the channel axis were 11.7 cm s−1 (landward) and 166.9 cm2 s−2. Of this axial current variance 48% resided at subtidal frequencies as compared to 45% associated with semidiurnal tides (the remaining 7% was mostly due to higher tidal harmonies). Over the most energetic portion of the axial current spectrum (periodicities of 4–5 days), 97% of the variance was coherent with the wind velocity component lying along the direction of maximum fetch, with the current lagging the wind by about 4 h. Owing to this extremely high coherence, a linear time-invariant stochastic model reproduced the axial current from the two orthogonal wind velocity components to within an rms error of 2.3 cm s−1. The wind also had a marked effect upon the density field. It is concluded that the effects of wind can permeate the entire water column of a partially mixed estuary arid can be of equal (or greater) importance to the circulation as the tides or gravitational convection.

Full access
Robert H. Weisberg
and
Thomas J. Weingartner

Abstract

Evidence is presented for the generation of planetary waves by barotropic instability within the cyclonic shear region of the Atlantic Ocean's South Equatorial Current (SEC). Immediately following the springtime intensification of the southeast trade wind, which accelerates the SEC westward, a packet of waves with central periodicity of around 25 days is observed lasting for about three cycles. Independent wavenumber analyses on 1983 and 1984 data give newly identical zonal wavelengths and phase speed estimates of around 1100 km and −50 cm s−1. The waves are anisotropic and spatially inhomogeneous with generation confined primarily to the mixed layer.

An energetics analysis using 1983 data centered upon the equator at 28°W shows a rapid increase in total perturbation energy (TPE) reaching values of 2000 erg cm−3 within two weeks. The subsequent decrease in TPE at this location is due primarily to meridional pressure-work divergence. Baroclinic instability is negligible because both the meridional and zonal components are small and cancelling.

Thermodynamically, the waves effect a southward heat transport during the period when the North Equatorial Countercurrent (NECC) is most rapidly gaining heat, suggesting that the waves act to regulate the heat stored in the NECC. Also the Reynolds' heat flux convergence upon the equator appears to halt the upwelling induced cooling and to increase sea surface temperature. In 1983 this convergence was equal to the climatological atmosphere-ocean net heat flux.

Dynamically, the waves decelerate the SEC north of the equator and reduce its shear. This occur simultaneously with a deceleration of the SEC by the basinwide adjustment of the zonal pressure gradient (ZPG). The seasonal modulation of the waves is therefore a consequence of both the ZPG response to seasonally varying wind stress as well as the instability itself since both are stabilizing. The basin size and hence the ZPG adjustment time differences between the Atlantic and Pacific Oceans would thus account for the observed differences in wave season durations between these two oceans.

Full access
Thomas J. Weingartner
and
Robert H. Weisberg

Abstract

The annual cycle of the upper ocean's vertical velocity component (w) on the equator at 28°W is examined by integrating the continuity equation using current meter data from the Seasonal Response of the Equatorial Atlantic Experiment. The annual cycle consists in part of an intense, but brief (∼1 month), upwelling season beginning with the onset of strong easterly wind stress in boreal spring. This upwelling is followed by weaker downwelling during the summer despite the persistence of strong easterly wind stress. The record-length averaged w profile shows that maximum upwelling (0.6 × 10−3 cm s−1) is located slightly above the core of the Equatorial Undercurrent and downwelling is located below the base of the thermocline. The standard deviations are about tenfold the magnitude of the means. Independent evidence supporting these results are that 1) sea surface temperature (SST) is related to w during the springtime changes in easterly wind stress with the observed and computed isotherm displacements in agreement, 2) temperature and w are coherent and in quadrature within the thermocline over a broad range of frequencies exclusive of the instability wave band, 3) during the instability wave season, upwelling is associated with increasing SST and the vertical Reynolds' heat flux is maximum and divergent in the thermocline, and 4) after the instability waves abate, w and easterly wind stress are coherent and out-of-phase. The observed evolution of w differs from that implied by climatology, and these differences are attributed to the ocean's response to rapidly varying winds that are observed in-situ versus slowly varying winds characteristic of climatology.

Full access
Thomas J. Weingartner
and
Robert H. Weisberg

Abstract

Temperature and velocity time series, obtained by surface moorings during the Seasonal Response of the Equatorial Atlantic Experiment, are used to investigate the role of ocean dynamics upon the annual cycle of equatorial sea surface temperature (SST) and upper ocean heat. The annual cycle in SST is explained by different mechanisms, each operant at different phases of the cycle. The boreal springtime decrease in SST results from upwelling in response to the seasonal intensification of easterly wind stress. This upwelling causes the seasonal formation of the cold tongue along the equator in the central and eastern portions of the basin. An early summer increase in SST is attributed to the meridional convergence of Reynolds' heat flux associated with surface current instability-generated waves. After the instability waves abate, SST and mixed layer depth remain relatively steady from late summer through fall when the advective terms are small and cancelling, suggesting that surface heating is then balanced by a diffusive flux at the base of the mixed layer. SST increases in wintertime following the seasonal relaxation in easterly wind stress, thus, completing its annual cycle. This increase is attributed to the concentration of the surface flux over a mixed layer that is shoaling due to both the basin-wide adjustment of the thermocline and the local reduction in turbulent energy production. Thus, SST variations are found to be most closely controlled by ocean dynamics during those times when the thermocline is adjusting basin-wide to the seasonal changes in wind stress; either directly by large advective fluxes (boreal spring-summer) or indirectly by mediating mixed layer depth (boreal winter). Analyses at 75 m depth show zonal and vertical advection to be important, and within a control volume over the upper 150 m all of the advective terms are important.

Full access
Dennis A. Mayer
and
Robert H. Weisberg

Abstract

Using COADS data spanning 1947–1988, we describe the regional nature of the Atlantic Ocean wind-driven circulation between 30°8 and 60°N and its annual and interannual variability. The Sverdrup streamfunction defines the circulation gyres. Our focus is on three central gyres: the Northern Hemisphere anticyclonic subtropical gyre, the cyclonic tropical gyre just north of the equator, and the clockwise equatorial gyre straddling the equator. This rendition of the Sverdrup streamfunction, computed with constant drag coefficient and air density, compares favorably with that from other climatologies. In the Straits of Florida, analyses suggest that differences between the annual cycle in Sverdrup transport and observations may be due to regional winds farther north. In the tropical gyre, the Sverdrup circulation argues against a continuous western boundary current transporting water from the equatorial region into the Caribbean in boreal winter, bringing to question the mechanisms for the known interhemisphere and intergyre exchanges of heat and mass. A conceptual model is proposed involving two stages. First, the western boundary current closing the clockwise equatorial gyre is instrumental in storing heat and mass between the North Equatorial Countercurrent ridge and the North Equatorial Current trough in boreal summer. Transport farther north, across the tropical gyre and into the subtropical gyre, in boreal winter is then accomplished by Ekman transport, as the seasonal change in wind-stress torque deepens the thermocline, thus allowing for vortex stretching and northward Sverdrup transport over the region of warmest waters. Once in the subtropical gyre, the Ekman transport continues to be northward despite the fact that the Sverdrup transport reverses to be southward. Annual and interannual variability is addressed by examining the spectrum of curl and its regional distribution. Outside the tropics and the Sargasso Sea, interannual exceeds annual variability by at least a factor of 1.5. A pentadal analysis in the subtropical gyre indicates that wind-stress curl was not a major factor in the density structure differences reported between 1955–1959 and 1970–1974; hence, these require other explanations.

Full access
Robert H. Weisberg
and
T. Y. Tang

Abstract

Observed variations in the Atlantic Ocean's equatorial thermocline are compared at four locations with simulations using an analytical reduced-gravity model. The comparison shows the essential features of the seasonal wind-forced thermocline response to be accounted for by a linear superposition of equatorial long waves, evolving basinwide, tending to bring the zonal pressure gradient into balance with the wind stress. A frequency response function is derived whose properties provide a basis for discussing the large scale features of the equatorial Atlantic Ocean's seasonal cycle—for example, its evolution along the equator, the maximum upwelling region observed in the Gulf of Guinea and the secondary upwelling season also observed there. Clarification is also given to the issue of remote versus local forcing for these features.

Full access
Ruoying He
and
Robert H. Weisberg

Abstract

The principal semidiurnal (M 2 and S 2) and diurnal (K 1 and O 1) tidal constituents are described on the west Florida continental shelf (WFS) using a combination of in situ measurements and a three-dimensional, primitive equation numerical model. The measurements are of sea level and currents along the coastline and across the shelf, respectively. The model extends from west of the Mississippi River to the Florida Keys with an open boundary arcing between. It is along this open boundary that the regional model is forced by a global tide model. Standard barotropic tidal analyses are performed for both the data and the model, and quantifiable metrics are provided for comparison. Based on these comparisons, the authors present coamplitude and cophase charts for sea level and velocity hodographs for currents. The semidiurnal constituents show marked spatial variability, whereas the diurnal constituents are spatially more uniform. Apalachicola Bay is a demarcation point for the semidiurnal tides that are well developed to the southeast along the WFS but are minimal to the west. The largest semidiurnal tides are in the Florida Big Bend and Florida Bay regions with a relative minimum in between just to the south of Tampa Bay. These spatial distributions may be explained on the basis of local geometry. A Lagrangian Stokes drift, coherently directed toward the northwest, is identified but is of relatively small magnitude when compared with the potential for particle transport by seasonal and synoptic-scale forcing. Bottom stress-induced tidal mixing is examined and estimates are made of the bottom logarithmic layer height by the M 2 tidal currents.

Full access
Robert H. Weisberg
and
Lin Qiao

Abstract

Horizontal divergence and vertical velocity (w) are estimated at 0°, 140°W using an array of five subsurface moored acoustic Doppler current profilers deployed from May 1990 to June 1991 during the Tropical Instability Wave Experiment. The record-length mean flow is divergent within the near-surface region and convergent within the thermocline, with maximum convergence located at the high speed core of the Equatorial Undercurrent (EUC). This pattern of divergence results in upwelling at and above the EUC core (with maximum value of 2.3 × 10−5 m s−1 located at 60-m depth) and downwelling below the core. The relative slopes in the zonal plane between the mean velocity vectors and the isotherms suggest a net diffusive heat flux. Assuming that this occurs vertically, an entrainment velocity parameterization provides an estimate of the “diapycnal vertical velocity” profile that reverses sign at the EUC core depth. Several kinematical and dynamical consistency checks are developed on both the time-dependent and the mean motions to supplement a discussion of errors for the mean w profile. The time-dependent fluctuations in w may be an order of magnitude larger than the mean values, and on synoptic timescales w may be directed either up or down over the entire upper 250-m region sampled.

Full access
Yonggang Liu
and
Robert H. Weisberg

Abstract

The across-shelf structures of the ocean circulation and the associated sea surface height (SSH) variability are examined on the west Florida shelf (WFS) for the 3-yr interval from September 1998 to December 2001. Five sets of characteristic circulation patterns are extracted from 2-day, low-pass-filtered data using the self-organizing map: extreme upwelling and downwelling structures with strong currents, asymmetric upwelling and downwelling structures with moderate currents, and a set of transitional structures with weak currents. The temporal variations of these structures are coherent with the local winds on synoptic weather time scales. On seasonal time scales they are related to both the local winds and the water density variations. The circulation is predominantly upwelling during autumn to spring months (October–April) and downwelling during summer months (June–September). Coastal sea level fluctuations are related to both the dynamical responses of the inner shelf circulation to meteorological forcing and the offshore SSH. On long time scales, the offshore SSH variations appear to dominate, whereas on synoptic weather time scales, the inner shelf wind-driven circulation responses are largest. The across-shelf distribution of SSH is estimated from the velocity, hydrography, wind, and coastal sea level data, and the results are compared with satellite altimetry data, thereby providing a means for calibrating satellite altimetry on the shelf.

Full access
Robert H. Weisberg
and
Wilton Sturges

Abstract

Narragansett Bay is a weakly stratified estuary comprised of three connecting passages of varying depths. The vertical distribution of horizontal velocity was observed in the West Passage using moored current meters. The instantaneous motion was characterized by semi-diurnal tidal currents of amplitude 25–60 cm s−1. These currents exhibited a phase advance with depth (total water depth=12.8 m) ranging with lunar phase from 0–3 h. The net current time series obtained by filtering out motions at tidal and higher frequencies were found to be an order of magnitude less than the instantaneous motion and well correlated to the prevailing 2–10 m s−1 winds. For periodicities of 2–3 days, the coherence between the longitudinal components of wind and net near surface current was as high as 0.8 with the current lagging the wind by about 3 h. The mean near surface speed, obtained by averaging over one month, was 1.2±1.6 cm s−1. The large error bounds were a result of the large variability of the net current time series (and not a result of inadequate sampling). A measure of this variability due to day-to-day changes in weather is given by the root mean square deviation of the net current time series or 2.6 cm s−1. The net transport of water through the West Passage was observed to be seaward or landward over the entire water column for several days duration, with typical wind induced transport fluctuations of &plusmn m2 s−1. Hence, a net communication of water exists between the East and West Passages with water flowing either way in response to the wind. Wind is concluded to be the dominant mechanism driving the net circulation in the West Passage of Narragansett Bay. This is in contrast with the classical views of gravitationally convected net estuarine circulation.

Full access