Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: Robert Marshall x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Abstract
Weather balloon payloads are commonly used by atmospheric researchers and enthusiasts to gain insight about the upper atmosphere. Balloon payloads are often unstable during flight due to high wind speeds that are experienced in both the troposphere and the lower stratosphere. High Altitude Visual Orientation Control (HAVOC) is a platform of cold-gas thrusters designed to control the azimuth of high-altitude balloon payloads to counteract high wind conditions. HAVOC’s active control scheme uses valves that direct the flow of pressurized gas into two sets of nozzles that can generate torque in either a clockwise or counterclockwise direction. This counteracts the rotation induced by wind and other forces encountered during a high-altitude balloon flight. The HAVOC design is discussed including its methods of measuring and controlling balloon payload rotation. Data from preliminary flights are presented, demonstrating the system’s ability to reduce payload rotation to a user-defined ±40° s−1 for a duration of 1 h 49 min and to maintain a fixed payload azimuth within ±30° for 1 h. In addition, we present possible uses for the HAVOC system tailored to the type of user, including atmospheric researchers, videographers, and students.
Abstract
Weather balloon payloads are commonly used by atmospheric researchers and enthusiasts to gain insight about the upper atmosphere. Balloon payloads are often unstable during flight due to high wind speeds that are experienced in both the troposphere and the lower stratosphere. High Altitude Visual Orientation Control (HAVOC) is a platform of cold-gas thrusters designed to control the azimuth of high-altitude balloon payloads to counteract high wind conditions. HAVOC’s active control scheme uses valves that direct the flow of pressurized gas into two sets of nozzles that can generate torque in either a clockwise or counterclockwise direction. This counteracts the rotation induced by wind and other forces encountered during a high-altitude balloon flight. The HAVOC design is discussed including its methods of measuring and controlling balloon payload rotation. Data from preliminary flights are presented, demonstrating the system’s ability to reduce payload rotation to a user-defined ±40° s−1 for a duration of 1 h 49 min and to maintain a fixed payload azimuth within ±30° for 1 h. In addition, we present possible uses for the HAVOC system tailored to the type of user, including atmospheric researchers, videographers, and students.
We have tested the NCAR Cross-Chain LORAN Atmospheric Sounding System (CLASS) in a fully mobile configuration, which we call M-CLASS. The sondes use LORAN-C navigation signals to allow calculation of balloon position and horizontal winds. In non-stormy environments, thermodynamics and wind data were almost always of high quality. Besides providing special soundings for operational forecasts and research programs, a major feature of mobile ballooning with M-CLASS is the ability to obtain additional data by flying other instruments on the balloons. We flew an electric field meter, along with a sonde, into storms on 8 of the initial 47 test flights in the spring of 1987. In storms, pressure, temperature, humidity, and wind data were of good quality about 80%, 75%, 60%, and 40% of the time, respectively. In a flight into a mesocyclone, we measured electric fields as high as −135 kV/m (at 10 km MSL) in a region of negative charge. The electric field data from several storms allow a quantitative assessment of conditions that accompany loss of LORAN data. LORAN tracking was lost at a median field of about 16 kV/m, and it returned at a median field of about 7 kV/m. Corona discharge from the LORAN antenna on the sonde was a cause of the loss of LORAN. We provided our early-afternoon M-CLASS test soundings to the National Weather Service Forecast Office in Norman, Oklahoma, in near real-time via amateur packet radio and also to the National Severe Storms Forecast Center. These soundings illustrate the potential for improving operational forecasts. Other test flights showed that M-CLASS data can provide high-resolution information on evolution of the Great Plains low-level jet stream. Our intercept of Hurricane Gilbert provided M-CLASS soundings in the right quadrant of the storm. We observed substantial wind shear in the lowest levels of the soundings around the time tornadoes were reported in south Texas. This intercept demonstrated the feasibility of taking M-CLASS data during the landfall phase of hurricanes and tropical storms.
We have tested the NCAR Cross-Chain LORAN Atmospheric Sounding System (CLASS) in a fully mobile configuration, which we call M-CLASS. The sondes use LORAN-C navigation signals to allow calculation of balloon position and horizontal winds. In non-stormy environments, thermodynamics and wind data were almost always of high quality. Besides providing special soundings for operational forecasts and research programs, a major feature of mobile ballooning with M-CLASS is the ability to obtain additional data by flying other instruments on the balloons. We flew an electric field meter, along with a sonde, into storms on 8 of the initial 47 test flights in the spring of 1987. In storms, pressure, temperature, humidity, and wind data were of good quality about 80%, 75%, 60%, and 40% of the time, respectively. In a flight into a mesocyclone, we measured electric fields as high as −135 kV/m (at 10 km MSL) in a region of negative charge. The electric field data from several storms allow a quantitative assessment of conditions that accompany loss of LORAN data. LORAN tracking was lost at a median field of about 16 kV/m, and it returned at a median field of about 7 kV/m. Corona discharge from the LORAN antenna on the sonde was a cause of the loss of LORAN. We provided our early-afternoon M-CLASS test soundings to the National Weather Service Forecast Office in Norman, Oklahoma, in near real-time via amateur packet radio and also to the National Severe Storms Forecast Center. These soundings illustrate the potential for improving operational forecasts. Other test flights showed that M-CLASS data can provide high-resolution information on evolution of the Great Plains low-level jet stream. Our intercept of Hurricane Gilbert provided M-CLASS soundings in the right quadrant of the storm. We observed substantial wind shear in the lowest levels of the soundings around the time tornadoes were reported in south Texas. This intercept demonstrated the feasibility of taking M-CLASS data during the landfall phase of hurricanes and tropical storms.
Abstract
The boundary layer plays a critical role in regulating energy and moisture exchange between the surface and the free atmosphere. However, the boundary layer and lower atmosphere (including shallow flow features and horizontal gradients that influence local weather) are not sampled at time and space scales needed to improve mesoscale analyses that are used to drive short-term model predictions of impactful weather. These data gaps are exasperated in remote and less developed parts of the world where relatively cheap observational capabilities could help immensely. The continued development of small, weather-sensing uncrewed aircraft systems (UAS), coupled with the emergence of an entirely new commercial sector focused on UAS applications, has created novel opportunities for partially filling this observational gap. This article provides an overview of the current level of readiness of small UAS for routinely sensing the lower atmosphere in support of national meteorological and hydrological services (NMHS) around the world. The potential benefits of UAS observations in operational weather forecasting and numerical weather prediction are discussed, as are key considerations that will need to be addressed before their widespread adoption. Finally, potential pathways for implementation of weather-sensing UAS into operations, which hinge on their successful demonstration within collaborative, multi-agency-sponsored testbeds, are suggested.
Abstract
The boundary layer plays a critical role in regulating energy and moisture exchange between the surface and the free atmosphere. However, the boundary layer and lower atmosphere (including shallow flow features and horizontal gradients that influence local weather) are not sampled at time and space scales needed to improve mesoscale analyses that are used to drive short-term model predictions of impactful weather. These data gaps are exasperated in remote and less developed parts of the world where relatively cheap observational capabilities could help immensely. The continued development of small, weather-sensing uncrewed aircraft systems (UAS), coupled with the emergence of an entirely new commercial sector focused on UAS applications, has created novel opportunities for partially filling this observational gap. This article provides an overview of the current level of readiness of small UAS for routinely sensing the lower atmosphere in support of national meteorological and hydrological services (NMHS) around the world. The potential benefits of UAS observations in operational weather forecasting and numerical weather prediction are discussed, as are key considerations that will need to be addressed before their widespread adoption. Finally, potential pathways for implementation of weather-sensing UAS into operations, which hinge on their successful demonstration within collaborative, multi-agency-sponsored testbeds, are suggested.
Abstract
For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
Abstract
For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
AIRS
Improving Weather Forecasting and Providing New Data on Greenhouse Gases
The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAA's requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols.
The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECMWF and the Met Office have also reported positive forecast impacts due AIRS.
AIRS is a hyperspectral sounder with 2,378 infrared channels between 3.7 and 15.4 μm. NOAA/NESDIS routinely distributes AIRS data within 3 hours to NWP centers around the world. The AIRS design represents a breakthrough in infrared space instrumentation with measurement stability and accuracies far surpassing any current research or operational sounder..The results we describe in this paper are “work in progress,” and although significant accomplishments have already been made much more work remains in order to realize the full potential of this suite of instruments.
The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAA's requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols.
The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECMWF and the Met Office have also reported positive forecast impacts due AIRS.
AIRS is a hyperspectral sounder with 2,378 infrared channels between 3.7 and 15.4 μm. NOAA/NESDIS routinely distributes AIRS data within 3 hours to NWP centers around the world. The AIRS design represents a breakthrough in infrared space instrumentation with measurement stability and accuracies far surpassing any current research or operational sounder..The results we describe in this paper are “work in progress,” and although significant accomplishments have already been made much more work remains in order to realize the full potential of this suite of instruments.
Abstract
This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.
Abstract
This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.