Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Robert Stickney x
  • Refine by Access: All Content x
Clear All Modify Search
Suzanne Van Cooten
,
Kevin E. Kelleher
,
Kenneth Howard
,
Jian Zhang
,
Jonathan J. Gourley
,
John S. Kain
,
Kodi Nemunaitis-Monroe
,
Zac Flamig
,
Heather Moser
,
Ami Arthur
,
Carrie Langston
,
Randall Kolar
,
Yang Hong
,
Kendra Dresback
,
Evan Tromble
,
Humberto Vergara
,
Richard A Luettich Jr.
,
Brian Blanton
,
Howard Lander
,
Ken Galluppi
,
Jessica Proud Losego
,
Cheryl Ann Blain
,
Jack Thigpen
,
Katie Mosher
,
Darin Figurskey
,
Michael Moneypenny
,
Jonathan Blaes
,
Jeff Orrock
,
Rich Bandy
,
Carin Goodall
,
John G. W. Kelley
,
Jason Greenlaw
,
Micah Wengren
,
Dave Eslinger
,
Jeff Payne
,
Geno Olmi
,
John Feldt
,
John Schmidt
,
Todd Hamill
,
Robert Bacon
,
Robert Stickney
, and
Lundie Spence

The objective of the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project is to prototype new hydrometeorologic techniques to address a critical NOAA service gap: routine total water level predictions for tidally influenced watersheds. Since February 2000, the project has focused on developing a coupled modeling system to accurately account for water at all locations in a coastal watershed by exchanging data between atmospheric, hydrologic, and hydrodynamic models. These simulations account for the quantity of water associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface.

Within this project, CI-FLOW addresses the following goals: i) apply advanced weather and oceanographic monitoring and prediction techniques to the coastal environment; ii) prototype an automated hydrometeorologic data collection and prediction system; iii) facilitate interdisciplinary and multiorganizational collaborations; and iv) enhance techniques and technologies that improve actionable hydrologic/hydrodynamic information to reduce the impacts of coastal flooding. Results are presented for Hurricane Isabel (2003), Hurricane Earl (2010), and Tropical Storm Nicole (2010) for the Tar–Pamlico and Neuse River basins of North Carolina. This area was chosen, in part, because of the tremendous damage inflicted by Hurricanes Dennis and Floyd (1999). The vision is to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.

Full access