Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Robert T. DeMaria x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
John A. Knaff
,
Scott P. Longmore
,
Robert T. DeMaria
, and
Debra A. Molenar

Abstract

A new and improved method for estimating tropical-cyclone (TC) flight-level winds using globally and routinely available TC information and infrared (IR) satellite imagery is presented. The developmental dataset is composed of aircraft reconnaissance (1995–2012) that has been analyzed to a 1 km × 10° polar grid that extends outward 165 km from the TC center. The additional use of an azimuthally average tangential wind at 500 km, based on global model analyses, allows the estimation of winds at larger radii. Analyses are rotated to a direction-relative framework, normalized by dividing the wind field by the observed maximum, and then decomposed into azimuthal wavenumbers in terms of amplitudes and phases. Using a single-field principal component method, the amplitudes and phases of the wind field are then statistically related to principal components of motion-relative IR images and factors related to the climatological radius of maximum winds. The IR principal components allow the wind field to be related to the radial and azimuthal variability of the wind field. Results show that this method, when provided with the storm location, the estimated TC intensity, the TC motion vector, and a single IR image, is able to estimate the azimuthal wavenumber 0 and 1 components of the wind field. The resulting wind field reconstruction significantly improves on the method currently used for satellite-based operational TC wind field estimates. This application has several potential uses that are discussed within.

Full access