Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Robert T. DeMaria x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Mark DeMaria
Robert T. DeMaria
John A. Knaff
, and
Debra Molenar


A large sample of Atlantic and eastern North Pacific tropical cyclone cases (2005–10) is used to investigate the relationships between lightning activity and intensity changes for storms over water. The lightning data are obtained from the ground-based World Wide Lightning Location Network (WWLLN). The results generally confirm those from previous studies: the average lightning density (strikes per unit area and time) decreases with radius from the storm center; tropical storms tend to have more lightning than hurricanes; intensifying storms tend to have greater lightning density than weakening cyclones; and the lightning density for individual cyclones is very episodic. Results also show that Atlantic tropical cyclones tend to have greater lightning density than east Pacific storms. The largest lightning density values are associated with sheared cyclones that do not intensify very much. The results also show that when the lightning density is compared with intensity change in the subsequent 24 h, Atlantic cyclones that rapidly weaken have a larger inner-core (0–100 km) lightning density than those that rapidly intensify. Thus, large inner-core lightning outbreaks are sometimes a signal that an intensification period is coming to an end. Conversely, the lightning density in the rainband regions (200–300 km) is higher for those cyclones that rapidly intensified in the following 24 h in both the Atlantic and east Pacific. When lightning density parameters are used as input to a discriminant analysis technique, results show that lightning information has the potential to improve the short-term prediction of tropical cyclone rapid intensity changes.

Full access