Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Roger A. Pielke Sr. x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Robert L. Walko
,
Larry E. Band
,
Jill Baron
,
Timothy G. F. Kittel
,
Richard Lammers
,
Tsengdar J. Lee
,
Dennis Ojima
,
Roger A. Pielke Sr.
,
Chris Taylor
,
Christina Tague
,
Craig J. Tremback
, and
Pier Luigi Vidale

Abstract

The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.

Full access
Emilee Lachenmeier
,
Rezaul Mahmood
,
Chris Phillips
,
Udaysankar Nair
,
Eric Rappin
,
Roger A. Pielke Sr.
,
William Brown
,
Steve Oncley
,
Joshua Wurman
,
Karen Kosiba
,
Aaron Kaulfus
,
Joseph Santanello Jr.
,
Edward Kim
,
Patricia Lawston-Parker
,
Michael Hayes
, and
Trenton E. Franz

Abstract

Modification of grasslands into irrigated and non-irrigated agriculture in the Great Plains results in significant impacts on weather and climate. However, there has been lack of observational data-based studies solely focused on impacts of irrigation on the PBL and convective conditions. The Great Plains Irrigation Experiment (GRAINEX) during the 2018 growing season collected data over irrigated and non-irrigated land uses over Nebraska to understand these impacts. Specifically, the objective was to determine whether the impacts of irrigation are sustained throughout the growing season.

The data analyzed include latent and sensible heat flux, air temperature, dew point temperature, equivalent temperature (moist enthalpy), PBL height, lifting condensation level (LCL), level of free convection (LFC), and PBL mixing ratio. Results show increased partitioning of energy into latent heat compared to sensible heat over irrigated areas while average maximum air was decreased and dewpoint temperature was increased from the early to peak growing season. Radiosonde data suggest reduced planetary boundary layer (PBL) heights at all launch sites from the early to peak growing season. However, reduction of PBL height was much greater over irrigated areas compared to non-irrigated croplands. Compared to the early growing period, LCL and LFC heights were also lower during the peak growing period over irrigated areas. Results note, for the first time, that the impacts of irrigation on PBL evolution and convective environment can be sustained throughout the growing season and regardless of background atmospheric conditions. These are important findings and applicable to other irrigated areas in the world.

Restricted access