Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Roger A. Pielke Sr. x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher L. Castro
,
Thomas B. McKee
, and
Roger A. Pielke Sr.

Abstract

The North American monsoon is a seasonal shift of upper- and low-level pressure and wind patterns that brings summertime moisture into the southwest United States and ends the late spring wet period in the Great Plains. The interannual variability of the North American monsoon is examined using the NCEP–NCAR reanalysis (1948–98). The diurnal and seasonal evolution of 500-mb geopotential height, integrated moisture flux, and integrated moisture flux convergence are constructed using a 5-day running mean for the months May through September. All of the years are used to calculate an average daily Z score that removes the diurnal, seasonal, and intraseasonal variability. The 30-day average Z score centered about the date is correlated with Pacific sea surface temperature anomaly (SSTA) indices associated with the El Niño–Southern Oscillation (ENSO) and the North Pacific oscillation (NPO). These indices are Niño-3, a North Pacific index, and a Pacific index that combines the previous two. Regional time-evolving precipitation indices for the Southwest and Great Plains, which consider the total number of wet or dry stations in a region, are also correlated with the SSTA indices. The use of nonnormally distributed point source precipitation data is avoided.

Teleconnections are computed relative to the climatological evolution of the North American monsoon, rather than to calendar months, thus more accurately accounting for the climatological changes in the large-scale circulation. Tropical and North Pacific SSTs are related to the occurrence of the Pacific Transition and East Pacific teleconnection patterns, respectively, in June and July. A high (low) NPO phase and El Niño (La Niña) conditions favor a weaker (stronger) and southward (northward) displaced monsoon ridge. These teleconnection patterns affect the timing and large-scale distribution of monsoon moisture. In the Great Plains, the spring wet season is lengthened (shortened) and early summer rainfall and integrated moisture flux convergence are above (below) average. In the Southwest, monsoon onset is late (early) and early summer rainfall and integrated moisture flux convergence are below (above) average. Relationships with Pacific SSTA indices decay in the later part of the monsoon coincident with weakening of the jet stream across the Pacific and strengthening of the monsoon ridge over North America. The most coherent summer climate patterns occur over the entire western United States when the Pacific index is substantially high or low, such as during the Midwest flood of 1993 and drought of 1988. The Pacific index in spring is a good predictor of early summer height anomalies over the western United States when the time evolution of the North Pacific SST dipole is considered.

Full access
Christopher L. Castro
,
Roger A. Pielke Sr.
, and
Jimmy O. Adegoke

Abstract

Fifty-three years of the NCEP–NCAR Reanalysis I are dynamically downscaled using the Regional Atmospheric Modeling System (RAMS) to generate a regional climate model (RCM) climatology of the contiguous United States and Mexico. Data from the RAMS simulations are compared to the recently released North American Regional Reanalysis (NARR), as well as observed precipitation and temperature data. The RAMS simulations show the value added by using a RCM in a process study framework to represent North American summer climate beyond the driving global atmospheric reanalysis. Because of its enhanced representation of the land surface topography, the diurnal cycle of convective rainfall is present. This diurnal cycle largely governs the transitions associated with the evolution of the North American monsoon with regards to rainfall, the surface energy budget, and surface temperature. The lower frequency modes of convective rainfall, though weaker, account for rainfall variability at a remote distance from elevated terrain. As in previous studies with other RCMs, RAMS precipitation is overestimated compared to observations. The Great Plains low-level jet (LLJ) is also well represented in both RAMS and NARR, but the Baja LLJ and associated gulf surges are not.

Full access
Lixin Lu
,
Roger A. Pielke Sr.
,
Glen E. Liston
,
William J. Parton
,
Dennis Ojima
, and
Melannie Hartman

Abstract

A coupled Regional Atmospheric Modeling System (RAMS) and ecosystem (CENTURY) modeling system has been developed to study regional-scale two-way interactions between the atmosphere and biosphere. Both atmospheric forcings and ecological parameters are prognostic variables in the linked system. The atmospheric and ecosystem models exchange information on a weekly time step. CENTURY receives as input air temperature, precipitation, radiation, wind speed, and relative humidity simulated by RAMS. From CENTURY-produced outputs, leaf area index, and vegetation transimissivity are computed and returned to RAMS. In this way, vegetation responses to weekly and seasonal atmospheric changes are simulated and fed back to the atmospheric–land surface hydrology model.

The coupled model was used to simulate the two-way biosphere and atmosphere feedbacks from 1 January to 31 December 1989, focusing on the central United States. Validation was performed for the atmospheric portion of the model by comparing with U.S. summary-of-the-day meteorological station observational datasets, and for the ecological component by comparing with advanced very high-resolution radiometer remote-sensing Normalized Difference Vegetation Index datasets. The results show that seasonal vegetation phenological variation strongly influences regional climate patterns through its control over land surface water and energy exchange. The coupled model captures the key aspects of weekly, seasonal, and annual feedbacks between the atmospheric and ecological systems. In addition, it has demonstrated its usefulness as a research tool for studying complex interactions between the atmosphere, biosphere, and hydrosphere.

Full access
Christopher L. Castro
,
Roger A. Pielke Sr.
,
Jimmy O. Adegoke
,
Siegfried D. Schubert
, and
Phillip J. Pegion

Abstract

Summer simulations over the contiguous United States and Mexico with the Regional Atmospheric Modeling System (RAMS) dynamically downscaling the NCEP–NCAR Reanalysis I for the period 1950–2002 (described in Part I of the study) are evaluated with respect to the three dominant modes of global SST. Two of these modes are associated with the statistically significant, naturally occurring interannual and interdecadal variability in the Pacific. The remaining mode corresponds to the recent warming of tropical sea surface temperatures. Time-evolving teleconnections associated with Pacific SSTs delay or accelerate the evolution of the North American monsoon. At the period of maximum teleconnectivity in late June and early July, there is an opposite relationship between precipitation in the core monsoon region and the central United States. Use of a regional climate model (RCM) is essential to capture this variability because of its representation of the diurnal cycle of convective rainfall. The RCM also captures the observed long-term changes in Mexican summer rainfall and suggests that these changes are due in part to the recent increase in eastern Pacific SST off the Mexican coast. To establish the physical linkage to remote SST forcing, additional RAMS seasonal weather prediction mode simulations were performed and these results are briefly discussed. In order for RCMs to be successful in a seasonal weather prediction mode for the summer season, it is required that the GCM provide a reasonable representation of the teleconnections and have a climatology that is comparable to a global atmospheric reanalysis.

Full access