Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: Roger Edwards x
  • Refine by Access: All Content x
Clear All Modify Search
Roger Edwards
and
Richard L. Thompson

Abstract

This study tests hypothetical correspondences between size of severe hail, WSR-88D derived vertically integrated liquid water (VIL), and an array of thermodynamic variables derived from computationally modified sounding analyses. In addition, these associations are documented for normalized VIL using various sounding parameters, and statistical predictive value is assigned to the various VIL-based and sounding variables. The database was gathered from Weather Service Radar-1988 Doppler (WSR-88D) units nationwide from cases identified during real-time operations and consists of over 400 hail events, each associated with a radar-observed VIL value and a modified observational sounding.

Some parameters are found to increase in the mean with larger hail-size categories. Specific hail size, however, varies widely across the spectra of VIL, thermodynamic sounding variables, and combinations thereof, with only a few exceptions. No operationally useful parameters of value in hail-size prediction were discovered in the database of VIL and thermodynamic sounding data. These largely antihypothetical findings are compared with hail forecasting and warning techniques developed in the WSR-88D era—few in number and mostly regionalized and informal in nature—and with more widespread and empirical forecasting assumptions involving many of the same variables.

Full access
Richard L. Thompson
and
Roger Edwards

Abstract

An overview of conditions associated with the Oklahoma–Kansas tornado outbreak of 3 May 1999 is presented, with emphasis on the evolution of environmental and supercellular characteristics most relevant to the prediction of violent tornado episodes. This examination provides a unique perspective of the event by combining analyses of remote observational data and numerical guidance with direct observations of the event in the field by forecasters and other observers. The 3 May 1999 outbreak included two prolific supercells that produced several violent tornadoes, with ambient parameters comparable to those of past tornado outbreaks in the southern and central Great Plains. However, not all aspects leading to the evening of 3 May unambiguously favored a major tornado outbreak. The problems that faced operational forecasters at the Storm Prediction Center are discussed in the context of this outbreak, including environmental shear and instability, subtle processes contributing to convective initiation, the roles of preexisting boundaries, and storm-relative flow. This examination reveals several specific aspects where conceptual models are deficient and/or additional research is warranted.

Full access
Roger Edwards
,
Harold E. Brooks
, and
Hannah Cohn

Abstract

U.S. tornado records form the basis for a variety of meteorological, climatological, and disaster-risk analyses, but how reliable are they in light of changing standards for rating, as with the 2007 transition of Fujita (F) to enhanced Fujita (EF) damage scales? To what extent are recorded tornado metrics subject to such influences that may be nonmeteorological in nature? While addressing these questions with utmost thoroughness is too large of a task for any one study, and may not be possible given the many variables and uncertainties involved, some variables that are recorded in large samples are ripe for new examination. We assess basic tornado-path characteristics—damage rating, length, width, and occurrence time, as well as some combined and derived measures—for a 24-yr period of constant path-width recording standard that also coincides with National Weather Service modernization and the WSR-88D deployment era. The middle of that period (in both time and approximate tornado counts) crosses the official switch from F to EF. At least minor shifts in all assessed path variables are associated directly with that change, contrary to the intent of EF implementation. Major and essentially stepwise expansion of tornadic path widths occurred immediately upon EF usage, and widths have expanded still farther within the EF era. We also document lesser increases in pathlengths and in tornadoes rated at least EF1 in comparison with EF0. These apparently secular changes in the tornado data can impact research dependent on bulk tornado-path characteristics and damage-assessment results.

Full access
Benjamin A. Schenkel
,
Michael Coniglio
, and
Roger Edwards

Abstract

This work investigates how the relationship between tropical cyclone (TC) tornadoes and ambient (i.e., synoptic-scale) deep-tropospheric (i.e., 850–200-hPa) vertical wind shear (VWS) varies between coastal and inland environments. Observed U.S. TC tornado track data are used to study tornado frequency and location, while dropsonde and radiosonde data are used to analyze convective-scale environments. To study the variability in the TC tornado–VWS relationship, these data are categorized by both 1) their distance from the coast and 2) reanalysis-derived VWS magnitude. The analysis shows that TCs produce coastal tornadoes regardless of VWS magnitude primarily in their downshear sector, with tornadoes most frequently occurring in strongly sheared cases. Inland tornadoes, including the most damaging cases, primarily occur in strongly sheared TCs within the outer radii of the downshear-right quadrant. Consistent with these patterns, dropsondes and coastal radiosondes show that the downshear-right quadrant of strongly sheared TCs has the most favorable combination of enhanced lower-tropospheric near-surface speed shear and veering, and reduced lower-tropospheric thermodynamic stability for tornadic supercells. Despite the weaker intensity farther inland, these kinematic conditions are even more favorable in inland environments within the downshear-right quadrant of strongly sheared TCs, due to the strengthened veering of the ambient winds and the lack of changes in the TC outer tangential wind field strength. The constructive superposition of the ambient and TC winds may be particularly important to inland tornado occurrence. Together, these results will allow forecasters to anticipate how the frequency and location of tornadoes and, more broadly, convection may change as TCs move inland.

Full access
Roger Edwards
,
John T. Allen
, and
Gregory W. Carbin

Abstract

Convective surface winds in the contiguous United States are classified as severe at 50 kt (58 mi h−1, or 26 m s−1), whether measured or estimated. In 2006, NCDC (now NCEI) Storm Data, from which analyzed data are directly derived, began explicit categorization of such reports as measured gusts (MGs) or estimated gusts (EGs). Because of the documented tendency of human observers to overestimate winds, the quality and reliability of EGs (especially in comparison with MGs) has been challenged, mostly for nonconvective winds and controlled-testing situations, but only speculatively for bulk convective data. For the 10-yr period of 2006–15, 150 423 filtered convective-wind gust magnitudes are compared and analyzed, including 15 183 MGs and 135 240 EGs, both nationally and by state. Nonmeteorological artifacts include marked geographic discontinuities and pronounced “spikes” of an order of magnitude in which EG values (in both miles per hour and knots) end in the digits 0 or 5. Sources such as NWS employees, storm chasers, and the general public overestimate EGs, whereas trained spotters are relatively accurate. Analysis of the ratio of EG to MG and their sources also reveals an apparent warning-verification-influence bias in the climatological distribution of wind gusts imparted by EG reliance in the Southeast. Results from prior wind-tunnel testing of human subjects are applied to 1) illustrate the difference between measured and perceived winds for the database and 2) show the impact on the severe-wind dataset if EGs were bias-corrected for the human overestimation factor.

Full access
Adam L. Houston
,
Richard L. Thompson
, and
Roger Edwards

Abstract

An analysis of 4 yr of Rapid Update Cycle-2 (RUC-2) derived soundings in proximity to radar-observed supercells and nonsupercells is conducted in an effort to answer two questions: 1) over what depth is the fixed-layer bulk wind differential (BWD; the vector difference between the wind velocity at a given level and the wind velocity at the surface) the best discriminator between supercell and nonsupercell environments and 2) does the upper-tropospheric storm-relative flow (UTSRF) discriminate between the environments of supercells and nonsupercells? Previous climatologies of sounding-based supercell forecast parameters have documented the ability of the 0–6-km BWD in delineating supercell from nonsupercell environments. However, a systematic examination of a wide range of layers has never been documented. The UTSRF has previously been tested as a parameter for discriminating between supercell and nonsupercell environments and there is some evidence that supercells may be sensitive to the UTSRF. However, this sensitivity may be a consequence of the correlation between UTSRF and the surface to midtropospheric BWD. Accurately assessing the ability of the UTSRF to distinguish between supercell and nonsupercell environments requires controlling for the surface to midtropospheric BWD.

It is shown that the bulk wind differential within the 0–5-km layer delineates best between supercell and nonsupercell environments. Analysis of the UTSRF demonstrates that even when not controlling for the BWD, the UTSRF has limited reliability in forecasting supercells. The lack of merit in using the UTSRF to forecast supercells is particularly evident when it is isolated from the BWD. Because the UTSRF and BWD are not independent, controlling for the BWD when examining the UTSRF reveals that the UTSRF is not a fundamental parameter that can be used to distinguish supercell from nonsupercell environments. Therefore, this work demonstrates that the UTSRF is an unreliable metric for forecasting supercell events.

Full access
Jason Naylor
,
Matthew S. Gilmore
,
Richard L. Thompson
,
Roger Edwards
, and
Robert B. Wilhelmson

Abstract

The accuracy, reliability, and skill of several objective supercell identification methods are evaluated using 113 simulations from an idealized cloud model with 1-km horizontal grid spacing. Horizontal cross sections of vorticity and radar reflectivity at both mid- and low levels were analyzed for the presence of a supercell, every 5 min of simulation time, to develop a “truth” database. Supercells were identified using well-known characteristics such as hook echoes, inflow notches, bounded weak-echo regions (BWERs), and the presence of significant vertical vorticity.

The three objective supercell identification techniques compared were the Pearson correlation (PC) using an analysis window centered on the midlevel storm updraft; a modified Pearson correlation (MPC), which calculates the PC at every point in the horizontal using a small 3 km × 3 km analysis window; and updraft helicity (UH). Results show that the UH method integrated from 2 to 5 km AGL, and using a threshold value of 180 m2 s−2, was equally as accurate as the MPC technique—averaged from 2 to 5 km AGL and using a minimum updraft threshold of 7 m s−1 with a detection threshold of 0.3—in discriminating between supercells and nonsupercells for 1-km horizontal grid spacing simulations. At courser resolutions, the UH technique performed best, while the MPC technique produced the largest threat scores for higher-resolution simulations. In addition, requiring that the supercell detection thresholds last at least 20 min reduced the number of false alarms.

Full access
Richard L. Thompson
,
Roger Edwards
,
John A. Hart
,
Kimberly L. Elmore
, and
Paul Markowski

Abstract

A sample of 413 soundings in close proximity to tornadic and nontornadic supercells is examined. The soundings were obtained from hourly analyses generated by the 40-km Rapid Update Cycle-2 (RUC-2) analysis and forecast system. A comparison of 149 observed soundings and collocated RUC-2 soundings in regional supercell environments reveals that the RUC-2 model analyses were reasonably accurate through much of the troposphere. The largest error tendencies were in temperatures and mixing ratios near the surface, primarily in 1-h forecast soundings immediately prior to the standard rawinsonde launches around 1200 and 0000 UTC. Overall, the RUC-2 analysis soundings appear to be a reasonable proxy for observed soundings in supercell environments.

Thermodynamic and vertical wind shear parameters derived from RUC-2 proximity soundings are evaluated for the following supercell and storm subsets: significantly tornadic supercells (54 soundings), weakly tornadic supercells (144 soundings), nontornadic supercells (215 soundings), and discrete nonsupercell storms (75 soundings). Findings presented herein are then compared to results from previous and ongoing proximity soundings studies. Most significantly, proximity soundings presented here reinforce the findings of previous studies in that vertical shear and moisture within 1 km of the ground can discriminate between nontornadic supercells and supercells producing tornadoes with F2 or greater damage. Parameters that combine measures of buoyancy, vertical shear, and low-level moisture show the strongest ability to discriminate between supercell classes.

Full access
Roger L. Steele
,
C. P. Edwards
,
Lewis O. Grant
, and
Gerhard Langer

Abstract

The NCAR acoustical ice nucleus counter was calibrated against a Bigg-Warner Weather Bureau type chamber modified as a mixing chamber. The mixing chamber was in turn calibrated against the CSU-NSF isothermal diffusion cloud chamber. This work was carried out using a 300-liter aluminized mylar bag into which known samples of silver iodide nuclei were introduced. Nuclei were transferred from the bag to the NCAR counter in a carrier gas, at a flow rate of 10 liters min−1. It was found that the NCAR counter measured from 16–52% of the count given by the mixing chamber. An NCAR unit was modified with a velvet liner to test the feasibility of eliminating the glycol system, and measurements were made as described above. The modified unit did not count reliably.

Full access
Roger Edwards
,
James G. LaDue
,
John T. Ferree
,
Kevin Scharfenberg
,
Chris Maier
, and
William L. Coulbourne

During the early to middle 2000s, in response to demand for more detail in wind damage surveying and recordkeeping, a team of atmospheric scientists and wind engineers developed the enhanced Fujita (EF) scale. The EF scale, codified officially into National Weather Service (NWS) use in February 2007, offers wind speed estimates for a range of degrees of damage (DoDs) across each of 28 damage indicators (DIs). In practice, this has increased precision of damage surveys for tornado and thunderstorm-wind events. Still, concerns remain about both the representativeness of DoDs and the sufficiency of DIs, including the following: How dependable are the wind speed ranges for certain DoDs? What other DIs can be included? How can recent advances in mapping and documentation tools be integrated into the surveying process and the storm records? What changes should be made to the existing scale: why, how, and by whom? What alternative methods may be included or adapted for estimating tornado intensity?

To begin coordinated discussion on these and related topics, interested scientists and engineers (including some involved in EF scale development) organized a national EF Scale Stakeholders' Meeting, held on 2–3 March 2010 in Norman, Oklahoma. This article presents more detailed background information, summarizes the meeting, presents possibilities for the future of the EF scale and damage surveys, and solicits ideas from the engineering and atmospheric science communities.

Full access