Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Roland Vogt x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Robert Spirig, Roland Vogt, Jarl Are Larsen, Christian Feigenwinter, Andreas Wicki, Joel Franceschi, Eberhard Parlow, Bianca Adler, Norbert Kalthoff, Jan Cermak, Hendrik Andersen, Julia Fuchs, Andreas Bott, Maike Hacker, Niklas Wagner, Gillian Maggs-Kölling, Theo Wassenaar, and Mary Seely


An intensive observation period was conducted in September 2017 in the central Namib, Namibia, as part of the project Namib Fog Life Cycle Analysis (NaFoLiCA). The purpose of the field campaign was to investigate the spatial and temporal patterns of the coastal fog that occurs regularly during nighttime and morning hours. The fog is often linked to advection of a marine stratus that intercepts with the terrain up to 100 km inland. Meteorological data, including cloud base height, fog deposition, liquid water path, and vertical profiles of wind speed/direction and temperature, were measured continuously during the campaign. Additionally, profiles of temperature and relative humidity were sampled during five selected nights with stratus/fog at both coastal and inland sites using tethered balloon soundings, drone profiling, and radiosondes. This paper presents an overview of the scientific goals of the field campaign; describes the experimental setup, the measurements carried out, and the meteorological conditions during the intensive observation period; and presents first results with a focus on a single fog event.

Free access
Manuela Lehner, C. David Whiteman, Sebastian W. Hoch, Erik T. Crosman, Matthew E. Jeglum, Nihanth W. Cherukuru, Ronald Calhoun, Bianca Adler, Norbert Kalthoff, Richard Rotunno, Thomas W. Horst, Steven Semmer, William O. J. Brown, Steven P. Oncley, Roland Vogt, A. Martina Grudzielanek, Jan Cermak, Nils J. Fonteyne, Christian Bernhofer, Andrea Pitacco, and Petra Klein


The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona’s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm−type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results.

Full access
Mathias W. Rotach, Pierluigi Calanca, Giovanni Graziani, Joachim Gurtz, D. G. Steyn, Roland Vogt, Marco Andretta, Andreas Christen, Stanislaw Cieslik, Richard Connolly, Stephan F. J. De Wekker, Stefano Galmarini, Evgeny N. Kadygrov, Vladislav Kadygrov, Evgeny Miller, Bruno Neininger, Magdalena Rucker, Eva Van Gorsel, Heidi Weber, Alexandra Weiss, and Massimiliano Zappa

During a special observing period (SOP) of the Mesoscale Alpine Programme (MAP), boundary layer processes in highly complex topography were investigated in the Riviera Valley in southern Switzerland. The main focus was on the turbulence structure and turbulent exchange processes near the valley surfaces and free troposphere. Due to the anticipated spatial inhomogeneity, a number of different turbulence probes were deployed on a cross section through the valley. Together with a suite of more conventional instrumentation, to observe mean meteorological structure in the valley, this effort yielded a highly valuable dataset. The latter is presently being exploited to yield insight into the turbulence structure in very complex terrain, and its relation to flow regimes and associated mean flow characteristics. Specific questions, such as a detailed investigation of turbulent exchange processes over complex topography and the validity of surface exchange parameterizations in numerical models for such surfaces, the closure of the surface energy balance, or the definition and meaning of the “boundary layer height,” are investigated using the MAP-Riviera dataset. In the present paper, we provide details on sites and their characteristics, on measurements and observational strategies, and on efforts to guarantee comparability between different instrumentation at different sites, and we include an overview of the available instrumentation. On the basis of preliminary data and first results, the main research goals of the project are outlined.

Full access