Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Ronald E. Stewart x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The 54-yr (1948–2001) NCEP–NCAR reanalysis data as well as other information were used to study the moisture transport and associated circulation features for the severe 2000/01 drought over the western and central Canadian Prairies. Most of the moisture for precipitation over the region is from the Pacific Ocean in winter (November–March) and from the Gulf of Mexico in summer (May–August). An analysis shows that the zonal moisture transport from the Pacific Ocean into both the North American continent and the western and central Canadian Prairies during the winter of the 2000/01 agricultural year was the least over the entire study period, and there was no significantly enhanced moisture influx from the Gulf of Mexico into the region to compensate. Very low winter precipitation was produced over the western and central Canadian Prairies as a consequence. During the ensuing summer period, moisture transport from the Gulf of Mexico was significantly less than normal and no significantly enhanced moisture transport from the Pacific Ocean occurred. These conditions collectively resulted in extremely dry surface conditions for the growing season.
These moisture transport features were mainly associated with prolonged and extraordinarily strong anomalously high pressures over western North America and their related stronger-than-normal air mass sinking over the western and central prairies and adjacent regions. The anomalous high pressures blocked the moisture from flowing into the western and central prairies and were also associated with the splitting of the jet stream that significantly reduced zonal moisture transport by changing the strength and incoming angle of the airflows from the Pacific Ocean during the winter of 2000/01.
Consequences of the stronger-than-normal subsidence were hot and dry surface air during the summer and less precipitation. Collectively, these dynamic factors are favorable for both the formation and the maintenance of droughts.
Abstract
The 54-yr (1948–2001) NCEP–NCAR reanalysis data as well as other information were used to study the moisture transport and associated circulation features for the severe 2000/01 drought over the western and central Canadian Prairies. Most of the moisture for precipitation over the region is from the Pacific Ocean in winter (November–March) and from the Gulf of Mexico in summer (May–August). An analysis shows that the zonal moisture transport from the Pacific Ocean into both the North American continent and the western and central Canadian Prairies during the winter of the 2000/01 agricultural year was the least over the entire study period, and there was no significantly enhanced moisture influx from the Gulf of Mexico into the region to compensate. Very low winter precipitation was produced over the western and central Canadian Prairies as a consequence. During the ensuing summer period, moisture transport from the Gulf of Mexico was significantly less than normal and no significantly enhanced moisture transport from the Pacific Ocean occurred. These conditions collectively resulted in extremely dry surface conditions for the growing season.
These moisture transport features were mainly associated with prolonged and extraordinarily strong anomalously high pressures over western North America and their related stronger-than-normal air mass sinking over the western and central prairies and adjacent regions. The anomalous high pressures blocked the moisture from flowing into the western and central prairies and were also associated with the splitting of the jet stream that significantly reduced zonal moisture transport by changing the strength and incoming angle of the airflows from the Pacific Ocean during the winter of 2000/01.
Consequences of the stronger-than-normal subsidence were hot and dry surface air during the summer and less precipitation. Collectively, these dynamic factors are favorable for both the formation and the maintenance of droughts.
Abstract
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Abstract
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.