Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Rong Yu x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Tsing-Chang Chen
,
Ming-Cheng Yen
,
Gin-Rong Liu
, and
Shu-Yu Wang

The midocean trough in the North Pacific may form a favorable environment for the genesis of some synoptic disturbances. In contrast, the North Pacific anticyclone may hinder the downward penetration of these disturbances into the lower troposphere and prevent the moisture supply to these disturbances from the lower troposphere. Because no thick clouds, rainfall, and destructive surface winds are associated with these disturbances to attract attention, they have not been analyzed or documented. Actually, the upper-level wind speed within these disturbances is sometimes as strong as tropical cyclones and has the possibility of causing air traffic hazards in the western subtropic Pacific. With infrared images of the Japanese Geostationary Meteorological Satellite and the NCEP–NCAR reanalysis data, 25 North Pacific disturbances were identified over six summers (1993–98). Two aspects of these disturbances were explored: spatial structure and basic dynamics. For their structure, the disturbances possess a well-organized vortex in the middle to upper troposphere with a descending dry/cold core encircled by the moist ascending air around the vortex periphery; the secondary circulation of the vortex is opposite to other types of synoptic disturbances. Since vorticity reaches maximum values along the midocean trough line, barotrophic instability is suggested as a likely genesis mechanism of the vortex. After the vortex is formed, the horizontal advection of total vorticity results in its westward propagation, while the secondary circulation hinders this movement. Along its westward moving course, close to East Asia, there is a reduction in vortex size and a tangential speed increase inversely proportional to the vortex size. Diminishing its horizontal convergence/descending motion by the upper-tropospheric East Asian high and the lower-tropospheric monsoon low, the vortex eventually dissipates along the East Asian coast.

Full access
Pao-Liang Chang
,
Jian Zhang
,
Yu-Shuang Tang
,
Lin Tang
,
Pin-Fang Lin
,
Carrie Langston
,
Brian Kaney
,
Chia-Rong Chen
, and
Kenneth Howard

Abstract

Over the last two decades, the Central Weather Bureau of Taiwan and the U.S. National Severe Storms Laboratory have been involved in a research and development collaboration to improve the monitoring and prediction of river flooding, flash floods, debris flows, and severe storms for Taiwan. The collaboration resulted in the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) system. The QPESUMS system integrates observations from multiple mixed-band weather radars, rain gauges, and numerical weather prediction model fields to produce high-resolution (1 km) and rapid-update (10 min) rainfall and severe storm monitoring and prediction products. The rainfall products are widely used by government agencies and emergency managers in Taiwan for flood and mudslide warnings as well as for water resource management. The 3D reflectivity mosaic and QPE products are also used in high-resolution radar data assimilation and for the verification of numerical weather prediction model forecasts. The system facilitated collaborations with academic communities for research and development of radar applications, including quantitative precipitation estimation and nowcasting. This paper provides an overview of the operational QPE capabilities in the Taiwan QPESUMS system.

Full access
Chunhui Lu
,
Jie Jiang
,
Ruidan Chen
,
Safi Ullah
,
Rong Yu
,
Fraser C. Lott
,
Simon F. B. Tett
, and
Buwen Dong
Open access