Search Results
Abstract
A simple scheme is proposed for penetrating atmospheric momentum flux over the ocean surface boundary layer or mixed layer (BL/ML) and is tested in the z-coordinate NOAA/Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM 3) for improving its performance. Analogous to the treatment in layered ocean models, wind stress is applied, as a body force, to the entire BL/ML whose depth is calculated from a nonlocal K-profile parameterization scheme. The penetrating scheme presents an explicit and effective way to distribute a priori momentum flux throughout the BL/ML that has varying depth in space and time, instead of just over the uppermost model level with fixed thickness. This additional procedure introduces an explicit mechanism that directly relates wind stress to the BL/ML formulation, which in turn controls current and thermal structure in the upper ocean and the interaction with the underlying thermocline. Two penetrating runs, one over the BL and the other over the ML, have similar results that differ systematically from those with the penetration over fixed depths (control run). It is demonstrated that, with coherent and systematic improvements, this penetrating scheme can have significant effects on simulated equatorial ocean currents and thermal structure not only in the surface layer, but also in the thermocline. Besides more reasonable ML depth simulation in the equatorial central basin, there is substantial reduction in the mean offset of simulated isotherm depths and warm bias in the thermocline, due to downward shift of the maximum upwelling zone in the equatorial central Pacific. Consistent with observations, the penetrating scheme realistically reproduces the springtime reversal of the South Equatorial Current and the corresponding surface warming in the central equatorial Pacific, with accompanying surfacing of the Equatorial Undercurrent Current in March–May.
Abstract
A simple scheme is proposed for penetrating atmospheric momentum flux over the ocean surface boundary layer or mixed layer (BL/ML) and is tested in the z-coordinate NOAA/Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM 3) for improving its performance. Analogous to the treatment in layered ocean models, wind stress is applied, as a body force, to the entire BL/ML whose depth is calculated from a nonlocal K-profile parameterization scheme. The penetrating scheme presents an explicit and effective way to distribute a priori momentum flux throughout the BL/ML that has varying depth in space and time, instead of just over the uppermost model level with fixed thickness. This additional procedure introduces an explicit mechanism that directly relates wind stress to the BL/ML formulation, which in turn controls current and thermal structure in the upper ocean and the interaction with the underlying thermocline. Two penetrating runs, one over the BL and the other over the ML, have similar results that differ systematically from those with the penetration over fixed depths (control run). It is demonstrated that, with coherent and systematic improvements, this penetrating scheme can have significant effects on simulated equatorial ocean currents and thermal structure not only in the surface layer, but also in the thermocline. Besides more reasonable ML depth simulation in the equatorial central basin, there is substantial reduction in the mean offset of simulated isotherm depths and warm bias in the thermocline, due to downward shift of the maximum upwelling zone in the equatorial central Pacific. Consistent with observations, the penetrating scheme realistically reproduces the springtime reversal of the South Equatorial Current and the corresponding surface warming in the central equatorial Pacific, with accompanying surfacing of the Equatorial Undercurrent Current in March–May.
Abstract
The mechanisms affecting the path of the depth-integrated North Atlantic western boundary current and the formation of the northern recirculation gyre are investigated using a hierarchy of models, namely, a robust diagnostic model, a prognostic model using a global 1° ocean general circulation model coupled to a two-dimensional atmospheric energy balance model with a hydrological cycle, a simple numerical barotropic model, and an analytic model. The results herein suggest that the path of this boundary current and the formation of the northern recirculation gyre are sensitive to both the magnitude of lateral viscosity and the strength of the deep western boundary current (DWBC). In particular, it is shown that bottom vortex stretching induced by a downslope DWBC near the south of the Grand Banks leads to the formation of a cyclonic northern recirculation gyre and keeps the path of the depth-integrated western boundary current downstream of Cape Hatteras separated from the North American coast. Both south of the Grand Banks and at the crossover region of the DWBC and Gulf Stream, the downslope DWBC induces strong bottom downwelling over the steep continental slope, and the magnitude of the bottom downwelling is locally stronger than surface Ekman pumping velocity, providing strong positive vorticity through bottom vortex-stretching effects. The bottom vortex-stretching effect is also present in an extensive area in the North Atlantic, and the contribution to the North Atlantic subpolar and subtropical gyres is on the same order as the local surface wind stress curl. Analytic solutions show that the bottom vortex stretching is important near the western boundary only when the continental slope is wider than the Munk frictional layer scale.
Abstract
The mechanisms affecting the path of the depth-integrated North Atlantic western boundary current and the formation of the northern recirculation gyre are investigated using a hierarchy of models, namely, a robust diagnostic model, a prognostic model using a global 1° ocean general circulation model coupled to a two-dimensional atmospheric energy balance model with a hydrological cycle, a simple numerical barotropic model, and an analytic model. The results herein suggest that the path of this boundary current and the formation of the northern recirculation gyre are sensitive to both the magnitude of lateral viscosity and the strength of the deep western boundary current (DWBC). In particular, it is shown that bottom vortex stretching induced by a downslope DWBC near the south of the Grand Banks leads to the formation of a cyclonic northern recirculation gyre and keeps the path of the depth-integrated western boundary current downstream of Cape Hatteras separated from the North American coast. Both south of the Grand Banks and at the crossover region of the DWBC and Gulf Stream, the downslope DWBC induces strong bottom downwelling over the steep continental slope, and the magnitude of the bottom downwelling is locally stronger than surface Ekman pumping velocity, providing strong positive vorticity through bottom vortex-stretching effects. The bottom vortex-stretching effect is also present in an extensive area in the North Atlantic, and the contribution to the North Atlantic subpolar and subtropical gyres is on the same order as the local surface wind stress curl. Analytic solutions show that the bottom vortex stretching is important near the western boundary only when the continental slope is wider than the Munk frictional layer scale.
Abstract
Climate models suffer from significant biases over the tropical Pacific Ocean, including a too-cold cold tongue and too-warm temperature at the depth of the thermocline. The emergence of model biases can be partly attributed to vertical mixing parameterizations, in which there are great uncertainties in selections of functional forms and empirical parameters. In this paper, the impacts of two different vertical mixing schemes on the tropical Pacific temperature simulations are investigated using version 5 of the Modular Ocean Model (MOM5). One vertical mixing scheme is the widely used K-profile parameterization (KPP) scheme, and the other is a hybrid mixing scheme (the Chen scheme) by combining a Kraus–Turner-type bulk mixed layer (ML) model with Peters et al.’s shear instability mixing model (PGT model). It is shown that the Chen scheme works better than the KPP scheme for SST simulation but produces an exaggerated subsurface warm bias simultaneously. The better SST simulation can be attributed to the employment of the PGT model, which produces lower levels of shear instability mixing than its counterpart in the KPP scheme. Furthermore, a modified KPP scheme is presented in which its shear instability mixing model and constant background diffusivity are replaced by the PGT model and the Argo-derived background diffusivity, respectively. This new scheme is then employed into MOM5-based ocean-only and coupled simulations, demonstrating substantial improvements in temperature simulations over the tropical Pacific. The modified KPP scheme can be easily employed into other ocean models, offering an effective way to improve ocean simulations.
Abstract
Climate models suffer from significant biases over the tropical Pacific Ocean, including a too-cold cold tongue and too-warm temperature at the depth of the thermocline. The emergence of model biases can be partly attributed to vertical mixing parameterizations, in which there are great uncertainties in selections of functional forms and empirical parameters. In this paper, the impacts of two different vertical mixing schemes on the tropical Pacific temperature simulations are investigated using version 5 of the Modular Ocean Model (MOM5). One vertical mixing scheme is the widely used K-profile parameterization (KPP) scheme, and the other is a hybrid mixing scheme (the Chen scheme) by combining a Kraus–Turner-type bulk mixed layer (ML) model with Peters et al.’s shear instability mixing model (PGT model). It is shown that the Chen scheme works better than the KPP scheme for SST simulation but produces an exaggerated subsurface warm bias simultaneously. The better SST simulation can be attributed to the employment of the PGT model, which produces lower levels of shear instability mixing than its counterpart in the KPP scheme. Furthermore, a modified KPP scheme is presented in which its shear instability mixing model and constant background diffusivity are replaced by the PGT model and the Argo-derived background diffusivity, respectively. This new scheme is then employed into MOM5-based ocean-only and coupled simulations, demonstrating substantial improvements in temperature simulations over the tropical Pacific. The modified KPP scheme can be easily employed into other ocean models, offering an effective way to improve ocean simulations.
Abstract
A reduced-gravity, primitive-equation, upper-ocean general circulation model is used to study the mean water pathways in the North Pacific subtropical and tropical ocean. The model features an explicit physical representation of the surface mixed layer, realistic basin geometry, observed wind and heat flux forcing, and a horizontal grid-stretching technique and a vertical sigma coordinate to obtain a realistic simulation of the subtropical/tropical circulation. Velocity fields, and isopycnal and trajectory analyses are used to understand the mean flow of mixed layer and thermocline waters between the subtropics and Tropics.
Subtropical/tropical water pathways are not simply direct meridional routes; the existence of vigorous zonal current systems obviously complicates the picture. In the surface mixed layer, upwelled equatorial waters flow into the subtropical gyre mainly through the midlatitude western boundary current (the model Kuroshio). There is additionally an interior ocean pathway, through the Subtropical Countercurrent (an eastward flow across the middle of the subtropical gyre), that directly feeds subtropical subduction sites. Below the mixed layer, the water pathways in the subtropical thermocline essentially reflect the anticyclonic gyre circulation where we find that the model subtropical gyre separates into two circulation centers. The surface circulation also features a double-cell pattern, with the poleward cell centered at about 30°N and the equatorward component contained between 15° and 25°N. In addition, thermocline waters that can be traced to subtropical subduction sites move toward the Tropics almost zonally across the basin, succeeding in flowing toward the equator only along relatively narrow north–south conduits. The low-latitude western boundary currents serve as the main southward circuit for the subducted subtropical thermocline water. However, the model does find a direct flow of thermocline water into the Tropics through the ocean interior, confined to the far western Pacific (away from the low-latitude western boundary currents) across 10°N. This interior pathway is found just to the west of a recirculating gyre in and just below the mixed layer in the northeastern Tropics. This equatorward interior flow and a flow that can be traced directly to the western boundary are then swept eastward by the deeper branches of the North Equatorial Countercurrent, finally penetrating to the equator in the central and eastern Pacific. Most of these results are consistent with available observations and recently published theoretical and idealized numerical experiments, although the interior pathway of subtropical thermocline water into the Tropics found in this experiment is not apparent in other published numerical simulations.
Potential vorticity dynamics are useful in explaining the pathways taken by subtropical thermocline water as it flows into the Tropics. In particular, a large-scale zonally oriented “island” of homogenous potential vorticity, whose signature is determined by thin isopycnal layers in the central tropical Pacific along about 10°N, is dynamically linked to a circulation that does not flow directly from the subtropics to the Tropics. This large-scale potential vorticity feature helps to explain the circuitous pathways of the subducted subtropical thermocline waters as they approach the equator. Consequently, waters must first flow westward to the western boundary north of these closed potential vorticity contours and then mostly move southward through the low-latitude western boundary currents, flow eastward with the North Equatorial Countercurrent, and finally equatorward to join the Equatorial Undercurrent in the thermocline.
Abstract
A reduced-gravity, primitive-equation, upper-ocean general circulation model is used to study the mean water pathways in the North Pacific subtropical and tropical ocean. The model features an explicit physical representation of the surface mixed layer, realistic basin geometry, observed wind and heat flux forcing, and a horizontal grid-stretching technique and a vertical sigma coordinate to obtain a realistic simulation of the subtropical/tropical circulation. Velocity fields, and isopycnal and trajectory analyses are used to understand the mean flow of mixed layer and thermocline waters between the subtropics and Tropics.
Subtropical/tropical water pathways are not simply direct meridional routes; the existence of vigorous zonal current systems obviously complicates the picture. In the surface mixed layer, upwelled equatorial waters flow into the subtropical gyre mainly through the midlatitude western boundary current (the model Kuroshio). There is additionally an interior ocean pathway, through the Subtropical Countercurrent (an eastward flow across the middle of the subtropical gyre), that directly feeds subtropical subduction sites. Below the mixed layer, the water pathways in the subtropical thermocline essentially reflect the anticyclonic gyre circulation where we find that the model subtropical gyre separates into two circulation centers. The surface circulation also features a double-cell pattern, with the poleward cell centered at about 30°N and the equatorward component contained between 15° and 25°N. In addition, thermocline waters that can be traced to subtropical subduction sites move toward the Tropics almost zonally across the basin, succeeding in flowing toward the equator only along relatively narrow north–south conduits. The low-latitude western boundary currents serve as the main southward circuit for the subducted subtropical thermocline water. However, the model does find a direct flow of thermocline water into the Tropics through the ocean interior, confined to the far western Pacific (away from the low-latitude western boundary currents) across 10°N. This interior pathway is found just to the west of a recirculating gyre in and just below the mixed layer in the northeastern Tropics. This equatorward interior flow and a flow that can be traced directly to the western boundary are then swept eastward by the deeper branches of the North Equatorial Countercurrent, finally penetrating to the equator in the central and eastern Pacific. Most of these results are consistent with available observations and recently published theoretical and idealized numerical experiments, although the interior pathway of subtropical thermocline water into the Tropics found in this experiment is not apparent in other published numerical simulations.
Potential vorticity dynamics are useful in explaining the pathways taken by subtropical thermocline water as it flows into the Tropics. In particular, a large-scale zonally oriented “island” of homogenous potential vorticity, whose signature is determined by thin isopycnal layers in the central tropical Pacific along about 10°N, is dynamically linked to a circulation that does not flow directly from the subtropics to the Tropics. This large-scale potential vorticity feature helps to explain the circuitous pathways of the subducted subtropical thermocline waters as they approach the equator. Consequently, waters must first flow westward to the western boundary north of these closed potential vorticity contours and then mostly move southward through the low-latitude western boundary currents, flow eastward with the North Equatorial Countercurrent, and finally equatorward to join the Equatorial Undercurrent in the thermocline.