Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Rowan Sutton x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
A technique is introduced by which high-resolution tracer fields may be constructed from low-resolution satellite observations. The technique relies upon the continual cascade of tracer variance from large to small scales and makes use of wind fields generated by a data assimilation scheme. To demonstrate its usefulness, the technique has been applied in a study of isentropic distributions of nitrous oxide in the winter midstratosphere, using measurements made by the Improved Stratospheric and Mesospheric Sounder instrument on the Upper Atmosphere Research Satellite. The results show that the high-resolution fields significantly increase the amount of information that is available from the satellite observations. The fields give insights into the characteristic structure and evolution of tracer distributions at scales that are normally obscured from view. Two results are particularly noteworthy. First, at the interface between low and middle latitudes there is evidence of active mixing. This mixing occurs on the eastern, equatorward side of air that is being drawn toward high latitudes around the polar vortex. Second, in the anticyclone, a complex pattern of transport is revealed. Air drawn in from low latitudes spirals together with ambient midlatitude air. Small scales are generated relatively slowly in the organized flow, and persistent filamentary structures, with transverse scales of hundreds of kilometers or greater, are seen.
Abstract
A technique is introduced by which high-resolution tracer fields may be constructed from low-resolution satellite observations. The technique relies upon the continual cascade of tracer variance from large to small scales and makes use of wind fields generated by a data assimilation scheme. To demonstrate its usefulness, the technique has been applied in a study of isentropic distributions of nitrous oxide in the winter midstratosphere, using measurements made by the Improved Stratospheric and Mesospheric Sounder instrument on the Upper Atmosphere Research Satellite. The results show that the high-resolution fields significantly increase the amount of information that is available from the satellite observations. The fields give insights into the characteristic structure and evolution of tracer distributions at scales that are normally obscured from view. Two results are particularly noteworthy. First, at the interface between low and middle latitudes there is evidence of active mixing. This mixing occurs on the eastern, equatorward side of air that is being drawn toward high latitudes around the polar vortex. Second, in the anticyclone, a complex pattern of transport is revealed. Air drawn in from low latitudes spirals together with ambient midlatitude air. Small scales are generated relatively slowly in the organized flow, and persistent filamentary structures, with transverse scales of hundreds of kilometers or greater, are seen.
Abstract
Identifying the prime drivers of the twentieth-century multidecadal variability in the Atlantic Ocean is crucial for predicting how the Atlantic will evolve in the coming decades and the resulting broad impacts on weather and precipitation patterns around the globe. Recently, Booth et al. showed that the Hadley Centre Global Environmental Model, version 2, Earth system configuration (HadGEM2-ES) closely reproduces the observed multidecadal variations of area-averaged North Atlantic sea surface temperature in the twentieth century. The multidecadal variations simulated in HadGEM2-ES are primarily driven by aerosol indirect effects that modify net surface shortwave radiation. On the basis of these results, Booth et al. concluded that aerosols are a prime driver of twentieth-century North Atlantic climate variability. However, here it is shown that there are major discrepancies between the HadGEM2-ES simulations and observations in the North Atlantic upper-ocean heat content, in the spatial pattern of multidecadal SST changes within and outside the North Atlantic, and in the subpolar North Atlantic sea surface salinity. These discrepancies may be strongly influenced by, and indeed in large part caused by, aerosol effects. It is also shown that the aerosol effects simulated in HadGEM2-ES cannot account for the observed anticorrelation between detrended multidecadal surface and subsurface temperature variations in the tropical North Atlantic. These discrepancies cast considerable doubt on the claim that aerosol forcing drives the bulk of this multidecadal variability.
Abstract
Identifying the prime drivers of the twentieth-century multidecadal variability in the Atlantic Ocean is crucial for predicting how the Atlantic will evolve in the coming decades and the resulting broad impacts on weather and precipitation patterns around the globe. Recently, Booth et al. showed that the Hadley Centre Global Environmental Model, version 2, Earth system configuration (HadGEM2-ES) closely reproduces the observed multidecadal variations of area-averaged North Atlantic sea surface temperature in the twentieth century. The multidecadal variations simulated in HadGEM2-ES are primarily driven by aerosol indirect effects that modify net surface shortwave radiation. On the basis of these results, Booth et al. concluded that aerosols are a prime driver of twentieth-century North Atlantic climate variability. However, here it is shown that there are major discrepancies between the HadGEM2-ES simulations and observations in the North Atlantic upper-ocean heat content, in the spatial pattern of multidecadal SST changes within and outside the North Atlantic, and in the subpolar North Atlantic sea surface salinity. These discrepancies may be strongly influenced by, and indeed in large part caused by, aerosol effects. It is also shown that the aerosol effects simulated in HadGEM2-ES cannot account for the observed anticorrelation between detrended multidecadal surface and subsurface temperature variations in the tropical North Atlantic. These discrepancies cast considerable doubt on the claim that aerosol forcing drives the bulk of this multidecadal variability.