Search Results

You are looking at 1 - 10 of 26 items for :

  • Author or Editor: Rowan Sutton x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search

CLIVAR Workshop on Atlantic Climate Predictability

Preface to the Special Issue of the Journal of Climate

Rowan Sutton
Full access
Len Shaffrey
and
Rowan Sutton

Abstract

In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation.

A long control run of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. The degree of compensation in the northern extratropics was found to increase with increasing time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes.

In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland–Iceland–Norwegian (GIN) Seas, which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.

Full access
Len Shaffrey
and
Rowan Sutton

Abstract

To gain a new perspective on the interaction of the Atlantic Ocean and the atmosphere, the relationship between the atmospheric and oceanic meridional energy transports is studied in a version of HadCM3, the U.K. Hadley Centre's coupled climate model. The correlation structure of the energy transports in the atmosphere and Atlantic Ocean as a function of latitude, and the cross correlation between the two systems are analyzed. The processes that give rise to the correlations are then elucidated using regression analyses.

In northern midlatitudes, the interannual variability of the Atlantic Ocean energy transport is dominated by Ekman processes. Anticorrelated zonal winds in the subtropics and midlatitudes, particularly associated with the North Atlantic Oscillation (NAO), drive anticorrelated meridional Ekman transports. Variability in the atmospheric energy transport is associated with changes in the stationary waves, but is only weakly related to the NAO. Nevertheless, atmospheric driving of the oceanic Ekman transports is responsible for a bipolar pattern in the correlation between the atmosphere and Atlantic Ocean energy transports.

In the Tropics, the interannual variability of the Atlantic Ocean energy transport is dominated by an adjustment of the tropical ocean to coastal upwelling induced along the Venezuelan coast by a strengthening of the easterly trade winds. Variability in the atmospheric energy transport is associated with a cross-equatorial meridional overturning circulation that is only weakly associated with variability in the trade winds along the Venezuelan coast. In consequence, there is only very limited correlation between the atmosphere and Atlantic Ocean energy transports in the Tropics of HadCM3.

Full access
Ed Hawkins
and
Rowan Sutton

Abstract

The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model [the third climate configuration of the Met Office Unified Model (HadCM3)] using a linear inverse modeling (LIM) approach. It is found that the evolution of temperature and salinity in the Atlantic, and the strength of the meridional overturning circulation (MOC), can be effectively described by a linear dynamical system forced by white noise. The forecasts produced using this linear model are more skillful than other reference forecasts for several decades. Furthermore, significant nonnormal amplification is found under several different norms. The regions from which this growth occurs are found to be fairly shallow and located in the far North Atlantic. Initially, anomalies in the Nordic seas impact the MOC and the anomalies then grow to fill the entire Atlantic basin, especially at depth, over one to three decades. It is found that the structure of the optimal initial condition for amplification is sensitive to the norm employed, but the initial growth seems to be dominated by MOC-related basin-scale changes, irrespective of the choice of norm. The consistent identification of the far North Atlantic as the most sensitive region for small perturbations suggests that additional observations in this region would be optimal for constraining decadal climate predictions.

Full access
Ed Hawkins
and
Rowan Sutton

Abstract

A key aspect in designing an efficient decadal prediction system is ensuring that the uncertainty in the ocean initial conditions is sampled optimally. Here one strategy for addressing this issue is considered by investigating the growth of optimal perturbations in the third climate configuration of the Met Office Unified Model (HadCM3) global climate model (GCM). More specifically, climatically relevant singular vectors (CSVs)—the small perturbations of which grow most rapidly for a specific set of initial conditions—are estimated for decadal time scales in the Atlantic Ocean. It is found that reliable CSVs can be estimated by running a large ensemble of integrations of the GCM. Amplification of the optimal perturbations occurs for more than 10 yr, and possibly up to 40 yr. The identified regions for growing perturbations are found to be in the far North Atlantic, and these perturbations cause amplification through an anomalous meridional overturning circulation response. Additionally, this type of analysis potentially informs the design of future ocean observing systems by identifying the sensitive regions where small uncertainties in the ocean state can grow maximally. Although these CSVs are expensive to compute, ways in which the process could be made more efficient in the future are identified.

Full access
Buwen Dong
and
Rowan T. Sutton

Abstract

Interdecadal variability of the Atlantic thermohaline circulation (THC) is studied in the third version of the Hadley Centre global coupled atmosphere–ocean sea-ice general circulation model (HadCM3). A diagnostic approach is used to elucidate the mechanism that governs the variability and its impacts on climate. An irregular and heavily damped THC oscillation with a period around 25 yr is identified. The oscillation appears to be forced by the atmosphere but the ocean is responsible for setting the time scale. Following a minimum in the THC, the mechanism for phase reversal involves the accumulation of cold water in the subpolar gyre, leading to an acceleration of the gyre circulation and the North Atlantic Current. This acceleration increases the transport of saline waters into the regions of active deep convection, raising the upper-ocean density and leading, after adjustment, to acceleration of the THC. The atmosphere stimulates this THC variability in two ways: 1) by forcing the subpolar gyre through (North Atlantic Oscillation) NAO-related wind stress curl and heat flux anomalies; and 2) by direct forcing of the region of active deep convection, also through wind stress curl and heat flux anomalies. The latter is not closely related to the NAO. The mechanism for phase reversal has many similarities to that found in a previous study with a much lower resolution coupled model, suggesting that this mechanism may be quite robust. However the time scale, and details of the atmospheric forcing, differ.

The THC variability in HadCM3 has significant impacts on the atmosphere not just in the Atlantic region but also more widely, throughout the global Tropics. The mechanism involves modulation by the THC of the cross-equator SST gradient in the tropical Atlantic. The SST anomalies induce a displacement of the ITCZ in the Atlantic basin with knock-on effects over the other ocean basins. These findings highlight the potential importance of the Atlantic THC as a cause of interdecadal climate variability on a global scale.

Full access
Buwen Dong
and
Rowan T. Sutton

Abstract

The variability of the westerly jet stream and storm track is crucial for summer weather and climate in the North Atlantic/European region. Observations for recent decades show notable trends in the summer jet from the 1970s to 2010s, characterized by an equatorward migration over the North Atlantic accompanied by a poleward migration and weakening of the Mediterranean jet over Europe. These changes in atmospheric circulation were associated with more cyclonic storms traveling across the United Kingdom into northern Europe, and fewer over the Mediterranean, leading to wet summers in northern Europe and dry summers in southern Europe. In this study we investigate the potential drivers and processes that may have been responsible for the observed changes in summer atmospheric circulation, with a particular focus on the role of anthropogenic aerosols (AA). We conduct attribution experiments with an atmospheric general circulation model (AGCM) forced with observed changes in sea surface temperatures/sea ice extent (SST/SIE), greenhouse gas concentrations, and AA precursor emissions. Comparison between the model results and observations strongly suggests that fast responses to AA changes were likely the primary driver of the observed poleward migration and weakening of the Mediterranean jet, with changes in SST/SIE playing a secondary role. The simulated response shows good agreement with the observed changes in both magnitude and vertical structure, which suggests that common mechanisms, involving aerosol–radiation and aerosol–cloud interactions, are responsible. By contrast, changes in the North Atlantic jet are influenced in the model experiments by changes in both Atlantic SST/SIE (which may themselves have been influenced by changes in AA) and fast responses to AA. In this case, however, there are significant differences between the model response and the observed changes; we argue that these differences may be explained by biases in the model climatology.

Open access
Jon Robson
,
Rowan Sutton
, and
Doug Smith

Abstract

During the 1990s there was a major change in the state of the world's oceans. In particular, the North Atlantic underwent a rapid warming, with sea surface temperatures (SSTs) in the subpolar gyre region increasing by 1°C in just a few years. Associated with the changes in SST patterns were changes in the surface climate, in particular, a tendency for warm and dry conditions over areas of North America in all seasons, and warm springs and wet summers over areas of Europe. Here, the extent to which a climate prediction system initialized using observations of the ocean state is able to capture the observed changes in seasonal mean surface climate is investigated. Rather than examining predictions of the mid-1990s North Atlantic warming event itself, this study compares hindcasts started before and after the warming, relative to hindcasts that do not assimilate information. It is demonstrated that the hindcasts capture many aspects of the observed changes in seasonal mean surface climate, especially in North, South, and Central America and in Europe. Furthermore, the prediction system retains skill beyond the first year. Finally, it is shown that, in addition to memory of Atlantic SSTs, successfully predicting Pacific SSTs was likely important for the hindcasts to predict surface climate over North America.

Full access
Buwen Dong
and
Rowan T. Sutton

Abstract

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability.

In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Full access