Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Russell S. Vose x
- Journal of Atmospheric and Oceanic Technology x
- Refine by Access: All Content x
Abstract
The Integrated Global Radiosonde Archive (IGRA) is a collection of historical and near-real-time radiosonde and pilot balloon observations from around the globe. Consisting of a foundational dataset of individual soundings, a set of sounding-derived parameters, and monthly means, the collection is maintained and distributed by the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI). It has been used in a variety of applications, including reanalysis projects, assessments of tropospheric and stratospheric temperature and moisture trends, a wide range of studies of atmospheric processes and structures, and as validation of observations from other observing platforms. In 2016, NCEI released version 2 of the dataset, IGRA 2, which incorporates data from a considerably greater number of data sources, thus increasing the data volume by 30%, extending the data back in time to as early as 1905, and improving the spatial coverage. To create IGRA 2, 40 data sources were converted into a common data format and merged into one coherent dataset using a newly designed suite of algorithms. Then, an overhauled version of the IGRA 1 quality-assurance system was applied to the integrated data. Last, monthly means and sounding-by-sounding moisture and stability parameters were derived from the new dataset. All of these components are updated on a regular basis and made available for download free of charge on the NCEI website.
Abstract
The Integrated Global Radiosonde Archive (IGRA) is a collection of historical and near-real-time radiosonde and pilot balloon observations from around the globe. Consisting of a foundational dataset of individual soundings, a set of sounding-derived parameters, and monthly means, the collection is maintained and distributed by the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI). It has been used in a variety of applications, including reanalysis projects, assessments of tropospheric and stratospheric temperature and moisture trends, a wide range of studies of atmospheric processes and structures, and as validation of observations from other observing platforms. In 2016, NCEI released version 2 of the dataset, IGRA 2, which incorporates data from a considerably greater number of data sources, thus increasing the data volume by 30%, extending the data back in time to as early as 1905, and improving the spatial coverage. To create IGRA 2, 40 data sources were converted into a common data format and merged into one coherent dataset using a newly designed suite of algorithms. Then, an overhauled version of the IGRA 1 quality-assurance system was applied to the integrated data. Last, monthly means and sounding-by-sounding moisture and stability parameters were derived from the new dataset. All of these components are updated on a regular basis and made available for download free of charge on the NCEI website.
Abstract
A database is described that has been designed to fulfill the need for daily climate data over global land areas. The dataset, known as Global Historical Climatology Network (GHCN)-Daily, was developed for a wide variety of potential applications, including climate analysis and monitoring studies that require data at a daily time resolution (e.g., assessments of the frequency of heavy rainfall, heat wave duration, etc.). The dataset contains records from over 80 000 stations in 180 countries and territories, and its processing system produces the official archive for U.S. daily data. Variables commonly include maximum and minimum temperature, total daily precipitation, snowfall, and snow depth; however, about two-thirds of the stations report precipitation only. Quality assurance checks are routinely applied to the full dataset, but the data are not homogenized to account for artifacts associated with the various eras in reporting practice at any particular station (i.e., for changes in systematic bias).
Daily updates are provided for many of the station records in GHCN-Daily. The dataset is also regularly reconstructed, usually once per week, from its 20+ data source components, ensuring that the dataset is broadly synchronized with its growing list of constituent sources. The daily updates and weekly reprocessed versions of GHCN-Daily are assigned a unique version number, and the most recent dataset version is provided on the GHCN-Daily website for free public access. Each version of the dataset is also archived at the NOAA/National Climatic Data Center in perpetuity for future retrieval.
Abstract
A database is described that has been designed to fulfill the need for daily climate data over global land areas. The dataset, known as Global Historical Climatology Network (GHCN)-Daily, was developed for a wide variety of potential applications, including climate analysis and monitoring studies that require data at a daily time resolution (e.g., assessments of the frequency of heavy rainfall, heat wave duration, etc.). The dataset contains records from over 80 000 stations in 180 countries and territories, and its processing system produces the official archive for U.S. daily data. Variables commonly include maximum and minimum temperature, total daily precipitation, snowfall, and snow depth; however, about two-thirds of the stations report precipitation only. Quality assurance checks are routinely applied to the full dataset, but the data are not homogenized to account for artifacts associated with the various eras in reporting practice at any particular station (i.e., for changes in systematic bias).
Daily updates are provided for many of the station records in GHCN-Daily. The dataset is also regularly reconstructed, usually once per week, from its 20+ data source components, ensuring that the dataset is broadly synchronized with its growing list of constituent sources. The daily updates and weekly reprocessed versions of GHCN-Daily are assigned a unique version number, and the most recent dataset version is provided on the GHCN-Daily website for free public access. Each version of the dataset is also archived at the NOAA/National Climatic Data Center in perpetuity for future retrieval.
Abstract
In this paper, a new set of daily gridded fields and area averages of temperature and precipitation is introduced that covers the contiguous United States (CONUS) from 1951 to present. With daily updates and a grid resolution of approximately 0.0417° (nominally 5 km), the product, named nClimGrid-Daily, is designed to be used particularly in climate monitoring and other applications that rely on placing event-specific meteorological patterns into a long-term historical context. The gridded fields were generated by interpolating morning and midnight observations from the Global Historical Climatology Network–Daily dataset using thin-plate smoothing splines. Additional processing steps limit the adverse effects of spatial and temporal variations in station density, observation time, and other factors on the quality and homogeneity of the fields. The resulting gridded data provide smoothed representations of the point observations, although the accuracy of estimates for individual grid points and days can be sensitive to local spatial variability and the ability of the available observations and interpolation technique to capture that variability. The nClimGrid-Daily dataset is therefore recommended for applications that require the aggregation of estimates in space and/or time, such as climate monitoring analyses at regional to national scales.
Significance Statement
Many applications that use historical weather observations require data on a high-resolution grid that are updated daily. Here, a new dataset of daily temperature and precipitation for 1951–present is introduced that was created by interpolating irregularly spaced observations to a regular grid with a spacing of 0.0417° across the contiguous United States. Compared to other such datasets, this product is particularly suitable for monitoring climate and drought on a daily basis because it was processed so as to limit artificial variations in space and time that may result from changes in the types and distribution of observations used.
Abstract
In this paper, a new set of daily gridded fields and area averages of temperature and precipitation is introduced that covers the contiguous United States (CONUS) from 1951 to present. With daily updates and a grid resolution of approximately 0.0417° (nominally 5 km), the product, named nClimGrid-Daily, is designed to be used particularly in climate monitoring and other applications that rely on placing event-specific meteorological patterns into a long-term historical context. The gridded fields were generated by interpolating morning and midnight observations from the Global Historical Climatology Network–Daily dataset using thin-plate smoothing splines. Additional processing steps limit the adverse effects of spatial and temporal variations in station density, observation time, and other factors on the quality and homogeneity of the fields. The resulting gridded data provide smoothed representations of the point observations, although the accuracy of estimates for individual grid points and days can be sensitive to local spatial variability and the ability of the available observations and interpolation technique to capture that variability. The nClimGrid-Daily dataset is therefore recommended for applications that require the aggregation of estimates in space and/or time, such as climate monitoring analyses at regional to national scales.
Significance Statement
Many applications that use historical weather observations require data on a high-resolution grid that are updated daily. Here, a new dataset of daily temperature and precipitation for 1951–present is introduced that was created by interpolating irregularly spaced observations to a regular grid with a spacing of 0.0417° across the contiguous United States. Compared to other such datasets, this product is particularly suitable for monitoring climate and drought on a daily basis because it was processed so as to limit artificial variations in space and time that may result from changes in the types and distribution of observations used.