Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Ryusuke Masunaga x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Ryusuke Masunaga
and
Niklas Schneider

Abstract

Satellite observations have revealed that mesoscale sea surface temperature (SST) perturbations can exert distinct influence on sea surface wind by modifying the overlying atmospheric boundary layer. Recently, spectral transfer functions have been shown to be useful to elucidate the wind response features. Spectral transfer functions can represent spatially lagged responses, their horizontal scale dependence, and background wind speed dependence. By adopting the transfer function analysis, the present study explores seasonality and regional differences in the wind response over the major western boundary current regions. Transfer functions estimated from satellite observations are found to be largely consistent among seasons and regions, suggesting that the underlying dominant dynamics are ubiquitous. Nevertheless, the wind response exhibits statistically significant seasonal and regional differences depending on background wind speed. When background wind is stronger (weaker) than 8.5 m s−1, the wind response is stronger (weaker) in winter than in summer. The Agulhas Retroflection region exhibits stronger wind response typically by 30% than the Gulf Stream and Kuroshio Extension regions. Although observed wind distributions are reasonably reconstructed from the transfer functions and observed SST, surface wind convergence zones along the Gulf Stream and Kuroshio Extension are underrepresented. The state-of-the-art atmospheric reanalysis and regional model represent well the structure of the transfer functions in the wavenumber space. The amplitude is, however, underestimated by typically 30%. The transfer function analysis can be adapted to many other atmospheric responses besides sea surface wind, and thus provide new insights into the climatic role of the mesoscale air–sea coupling.

Open access