Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: S. A. Clough x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
D. D. Turner, B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin

Abstract

Thousands of comparisons between total precipitable water vapor (PWV) obtained from radiosonde (Vaisala RS80-H) profiles and PWV retrieved from a collocated microwave radiometer (MWR) were made at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains Cloud and Radiation Testbed (SGP CART) site in northern Oklahoma from 1994 to 2000. These comparisons show that the RS80-H radiosonde has an approximate 5% dry bias compared to the MWR. This observation is consistent with interpretations of Vaisala RS80 radiosonde data obtained during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). In addition to the dry bias, analysis of the PWV comparisons as well as of data obtained from dual-sonde soundings done at the SGP show that the calibration of the radiosonde humidity measurements varies considerably both when the radiosondes come from different calibration batches and when the radiosondes come from the same calibration batch. This variability can result in peak-to-peak differences between radiosondes of greater than 25% in PWV. Because accurate representation of the vertical profile of water vapor is critical for ARM's science objectives, an empirical method for correcting the radiosonde humidity profiles is developed based on a constant scaling factor. By using an independent set of observations and radiative transfer models to test the correction, it is shown that the constant humidity scaling method appears both to improve the accuracy and reduce the uncertainty of the radiosonde data. The ARM data are also used to examine a different, physically based, correction scheme that was developed recently by scientists from Vaisala and the National Center for Atmospheric Research (NCAR). This scheme, which addresses the dry bias problem as well as other calibration-related problems with the RS80-H sensor, results in excellent agreement between the PWV retrieved from the MWR and integrated from the corrected radiosonde. However, because the physically based correction scheme does not address the apparently random calibration variations observed, it does not reduce the variability either between radiosonde calibration batches or within individual calibration batches.

Full access
K. E. Cady-Pereira, M. W. Shephard, D. D. Turner, E. J. Mlawer, S. A. Clough, and T. J. Wagner

Abstract

Accurate water vapor profiles from radiosondes are essential for long-term climate prediction, weather prediction, validation of remote sensing retrievals, and other applications. The Vaisala RS80, RS90, and RS92 radiosondes are among the more commonly deployed radiosondes in the world. However, numerous investigators have shown that the daytime water vapor profiles measured by these instruments present a significant dry bias due to the solar heating of the humidity sensor. This bias in the column-integrated precipitable water vapor (PWV), along with variability due to calibration, can be removed by scaling the humidity profile to agree with the PWV retrieved from a microwave radiometer (MWR), as has been demonstrated by several previous studies. Infrared radiative closure analyses have shown that the MWR PWV does not present daytime versus nighttime differences; thus, scaling by the MWR is a possible approach for removing the daytime dry bias. However, MWR measurements are not routinely available at all radiosonde launch sites. Starting from a long-term series of sonde and MWR PWV measurements from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, the authors have developed a simple correction to the column-integrated sonde PWV, derived from an analysis of the ratio of the MWR and sonde measurements; this correction is a function of the atmospheric transmittance as determined by the solar zenith angle, and it effectively removes the daytime dry bias at all solar zenith angles. The correction was validated by successfully applying it to an independent dataset from the ARM tropical western Pacific (TWP) site.

Full access