Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: S. Chang x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
S. Zhang
,
Y.-S. Chang
,
X. Yang
, and
A. Rosati

Abstract

Given a biased coupled model and the atmospheric and oceanic observing system, maintaining a balanced and coherent climate estimation is of critical importance for producing accurate climate analysis and prediction initialization. However, because of limitations of the observing system (e.g., most of the oceanic measurements are only available for the upper ocean), directly evaluating climate estimation with real observations is difficult. With two coupled models that are biased with respect to each other, a biased twin experiment is designed to simulate the problem. To do that, the atmospheric and oceanic observations drawn from one model based on the modern climate observing system are assimilated into the other. The model that produces observations serves as the truth and the degree by which an assimilation recovers the truth steadily and coherently is an assessment of the impact of the data constraint scheme on climate estimation. Given the assimilation model bias of warmer atmosphere and colder ocean, where the atmospheric-only (oceanic only) data constraint produces an overcooling (overwarming) ocean through the atmosphere–ocean interaction, the constraints with both atmospheric and oceanic data create a balanced and coherent ocean estimate as the observational model. Moreover, the consistent atmosphere–ocean constraint produces the most accurate estimate for North Atlantic Deep Water (NADW), whereas NADW is too strong (weak) if the system is only constrained by atmospheric (oceanic) data. These twin experiment results provide insights that consistent data constraints of multiple components are very important when a coupled model is combined with the climate observing system for climate estimation and prediction initialization.

Full access
Tarun Verma
,
R. Saravanan
,
P. Chang
, and
S. Mahajan

Abstract

The large-scale and long-term climate impacts of anthropogenic sulfate aerosols consist of Northern Hemisphere cooling and a southward shift of the tropical rain belt. On interannual time scales, however, the response to aerosols is localized with a sizable imprint on local ocean–atmosphere interaction. A large concentration of anthropogenic sulfates over Asia may impact ENSO by modifying processes and interactions that generate this coupled ocean–atmosphere variability. Here, we use climate model experiments with different degrees of ocean–atmosphere coupling to study the tropical Pacific response to an abrupt increase in anthropogenic sulfates. These include an atmospheric general circulation model (GCM) coupled to either a full-ocean GCM or a slab-ocean model, or simply forced by climatology of sea surface temperature. Comparing the responses helps differentiate between the fast atmospheric and slow ocean-mediated responses, and highlights the role of ocean–atmosphere coupling in the latter. We demonstrate the link between the Walker circulation and the equatorial Pacific upper-ocean dynamics in response to increased sulfate aerosols. The local surface cooling due to sulfate aerosols emitted over the Asian continent drives atmospheric subsidence over the equatorial west Pacific. The associated anomalous circulation imparts westerly momentum to the underlying Pacific Ocean, leading to an El Niño–like upper-ocean response and a transient warming of the east equatorial Pacific Ocean. The oceanic adjustment eventually contributes to its decay, giving rise to a damped oscillation of the tropical Pacific Ocean in response to abrupt anthropogenic sulfate aerosol forcing.

Full access
Long S. Chiu
and
Alfred T. C. Chang

Abstract

The climatology of oceanic rain column height derived from 12 years (July 1987–June 1999) of Special Sensor Microwave Imager (SSM/I) data is presented. The estimation procedure is based on a technique developed by Wilheit et al. In the annual mean, the SSM/I-derived oceanic rain height shows a maximum of about 4.7 km in the Tropics and decreases toward the high latitudes to less than 3.5 km at 50°. Interannual variations exhibit seasonal dependency and show maxima of about 200–300 m in the oceanic dry zones and in the midlatitude storm track regions. The rain heights estimated from the morning passes of the SSM/I are lower than those computed from the afternoon passes by about 60 m in the Tropics but are higher north of 40°N. This small difference cannot change the conclusion about the morning maximum in rain rate. The nonsystematic error increases with decreasing rain column height and is estimated to be about 120 m for rain heights of 4–5 km and 200 m at 3.5 km. Comparison with the height of the 0°C isotherm derived from the Goddard Laboratory for Atmospheres general circulation model (GCM) results shows a mean zonal low bias (SSM/I lower than GCM freezing height) of about 200 m in the Tropics. Outside the Tropics, the SSM/I rain column heights are much higher, reaching a difference of 2 km at 50°N. The small bias in the Tropics is consistent with the notion that the melting layer extends over hundreds of meters below the freezing level. Outside the Tropics, the sampling of the SSM/I rain height and the inclusion of nonraining observations in GCM calculations may contribute to the large discrepancy. The freezing height is interpreted as the columnar water content and found to be consistent with columnar water vapor maps retrieved from SSM/I data.

Full access
Tsing-Chang Chen
,
Wan-Ru Huang
, and
Eugene S. Takle

Abstract

Annual variation of midlatitude precipitation and its maintenance through divergent water vapor flux were explored by the use of hydrological variables from three reanalyses [(NCEP–NCAR, ECMWF Re-Analysis (ERA), and Goddard Earth Observing System (GEOS-1)] and two global precipitation datasets [Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and Global Precipitation Climatology Project (GPCP)]. Two annual variation patterns of midlatitude precipitation were identified:

  1. Tropical–midlatitude precipitation contrast: Midlatitude precipitation along storm tracks over the oceans attains its maximum in winter and its minimum in summer opposite to that over the tropical continents.

  2. Land–ocean precipitation contrast: The annual precipitation variation between the oceans and the continent masses exhibits a pronounced seesaw.

The annual variation of precipitation along storm tracks of both hemispheres follows that of the convergence of transient water vapor flux. On the other hand, the land–ocean precipitation contrast in the Northern Hemisphere midlatitudes is primarily maintained by the annual seesaw between the divergence of stationary water vapor flux over the western oceans and the convergence of this water vapor flux over the eastern oceans during winter. The pattern is reversed during the summer. This divergence–convergence exchange of stationary water vapor flux is coupled with the annual evolution of upper-level ridges over continents and troughs over the oceans.

Full access
P. Chang
,
T. Yamagata
,
P. Schopf
,
S. K. Behera
,
J. Carton
,
W. S. Kessler
,
G. Meyers
,
T. Qu
,
F. Schott
,
S. Shetye
, and
S.-P. Xie

Abstract

The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Niño–related processes and on development of tropical ocean models capable of simulating and predicting El Niño. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Niño and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Niño and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Niño. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Niño and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate.

Full access
S. D. Schubert
,
Y. Chang
,
H. Wang
,
R. D. Koster
, and
A. M. Molod

Abstract

We outline a framework for identifying the geographical sources of biases in climate models. By forcing the model with time-averaged short-term analysis increments [tendency bias corrections (TBCs)] over well-defined regions, we can quantify how the associated reduced tendency errors in these regions manifest themselves both locally and remotely through large-scale teleconnections. Companion experiments in which the model is fully corrected [constrained to remain close to the analysis at each time step, termed replay (RPL)] in the various regions provide an upper bound to the local and remote TBC impacts. An example is given based on MERRA-2 and the NASA/GMAO GEOS AGCM used to generate MERRA-2. The results highlight the ability of the approach to isolate the geographical sources of some of the long-standing boreal summer biases of the GEOS model, including a stunted North Pacific summer jet, a dry bias in the U.S. Great Plains, and a warm bias over most of the Northern Hemisphere land. In particular, we show that the TBC over a region that encompasses Tibet has by far the largest impact (compared with all other regions) on the NH summer jets and related variables, leading to significant improvements in the simulation of North American temperature and, to a lesser degree, precipitation. It is further shown that the results of the regional TBC experiments are for the most part linear in the summer hemisphere, allowing a robust interpretation of the results.

Full access
Y. Chang
,
S. D. Schubert
,
R. D. Koster
,
A. M. Molod
, and
H. Wang

Abstract

We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the model’s climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphere–ocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summer—long-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill.

Full access
Rym Msadek
,
T. L. Delworth
,
A. Rosati
,
W. Anderson
,
G. Vecchi
,
Y.-S. Chang
,
K. Dixon
,
R. G. Gudgel
,
W. Stern
,
A. Wittenberg
,
X. Yang
,
F. Zeng
,
R. Zhang
, and
S. Zhang

Abstract

Decadal prediction experiments were conducted as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) using the GFDL Climate Model, version 2.1 (CM2.1) forecast system. The abrupt warming of the North Atlantic Subpolar Gyre (SPG) that was observed in the mid-1990s is considered as a case study to evaluate forecast capabilities and better understand the reasons for the observed changes. Initializing the CM2.1 coupled system produces high skill in retrospectively predicting the mid-1990s shift, which is not captured by the uninitialized forecasts. All the hindcasts initialized in the early 1990s show a warming of the SPG; however, only the ensemble-mean hindcasts initialized in 1995 and 1996 are able to reproduce the observed abrupt warming and the associated decrease and contraction of the SPG. Examination of the physical mechanisms responsible for the successful retrospective predictions indicates that initializing the ocean is key to predicting the mid-1990s warming. The successful initialized forecasts show an increased Atlantic meridional overturning circulation and North Atlantic Current transport, which drive an increased advection of warm saline subtropical waters northward, leading to a westward shift of the subpolar front and, subsequently, a warming and spindown of the SPG. Significant seasonal climate impacts are predicted as the SPG warms, including a reduced sea ice concentration over the Arctic, an enhanced warming over the central United States during summer and fall, and a northward shift of the mean ITCZ. These climate anomalies are similar to those observed during a warm phase of the Atlantic multidecadal oscillation, which is encouraging for future predictions of North Atlantic climate.

Full access
Hyacinth C. Nnamchi
,
Jianping Li
,
Fred Kucharski
,
In-Sik Kang
,
Noel S. Keenlyside
,
Ping Chang
, and
Riccardo Farneti

Abstract

Equatorial Atlantic variability is dominated by the Atlantic Niño peaking during the boreal summer. Studies have shown robust links of the Atlantic Niño to fluctuations of the St. Helena subtropical anticyclone and Benguela Niño events. Furthermore, the occurrence of opposite sea surface temperature (SST) anomalies in the eastern equatorial and southwestern extratropical South Atlantic Ocean (SAO), also peaking in boreal summer, has recently been identified and termed the SAO dipole (SAOD). However, the extent to which and how the Atlantic Niño and SAOD are related remain unclear. Here, an analysis of historical observations reveals the Atlantic Niño as a possible intrinsic equatorial arm of the SAOD. Specifically, the observed sporadic equatorial warming characteristic of the Atlantic Niño (~0.4 K) is consistently linked to southwestern cooling (~−0.4 K) of the Atlantic Ocean during the boreal summer. Heat budget calculations show that the SAOD is largely driven by the surface net heat flux anomalies while ocean dynamics may be of secondary importance. Perturbations of the St. Helena anticyclone appear to be the dominant mechanism triggering the surface heat flux anomalies. A weakening of the anticyclone will tend to weaken the prevailing northeasterlies and enhance evaporative cooling over the southwestern Atlantic Ocean. In the equatorial region, the southeast trade winds weaken, thereby suppressing evaporation and leading to net surface warming. Thus, it is hypothesized that the wind–evaporation–SST feedback may be responsible for the growth of the SAOD events linking southern extratropics and equatorial Atlantic variability via surface net heat flux anomalies.

Full access
R. J. Small
,
J. Kurian
,
P. Chang
,
G. Xu
,
H. Tsujino
,
S. Yeager
,
G. Danabasoglu
,
W. M. Kim
,
A. Altuntas
, and
F. Castruccio

Abstract

In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state.

Restricted access