Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: S. Lindgrén x
  • Refine by Access: All Content x
Clear All Modify Search
S. Lindgrén and J. Neumann


James II, King of England from 1685 to 1688, increasingly antagonized his people by his forced attempts to restore the Catholic faith to a position of eminence in England; many of his actions were contrary to acts passed by earlier Parliaments (he ruled without Parliament most of his reign). Leading dignitaries of the Church of England, of the Protestant nobility, and some of the high officers of the Army and Navy came to the conclusion that the only remedy to the country's ills was to call in William, the Prince of Orange and Chief Magistrate (“Stadholder”) of the Netherlands, whose spouse Mary, James' daughter, was, until July 1688, the heir-presumptive to the English crown; the prince himself had a position in the list of succession, bring a nephew of James.

Over and above the prince's personal ambitions, it was his conviction and that of several other leading personalities in the Dutch Republic that it was in the vital interest of the Netherlands to influence England's policies, and, in particular, to prevent a line-up of England with the France of Louis XIV, who had hostile designs on the Republic. As long as the danger of a French assault on the Netherlands was imminent, the States-General of the Republic would not authorize the “descent” on England, but when late in September 1688 Louis decided to attack the German States on the Middle-Rhine first, the “descent” gained approval.

The peak of the crisis about James’ policies in England was reached in summer-early fall of 1688. In the meantime, William assembled a large fleet and force in the Netherlands to “descend” on England, but his sailing was hindered by winds that in September and October blew with nearly total persistence from the westerly quarter. People in England and in the Netherlands were daily watching for weeks the direction of wind. They called the easterly winds “Protestant winds” and the westerly winds “Popish winds.” In addition to making possible the invasion, the “Protestant winds” made it difficult for James to bring over Catholic Irish troops from Ireland.

Full access
Nick A. Rayner, Renate Auchmann, Janette Bessembinder, Stefan Brönnimann, Yuri Brugnara, Francesco Capponi, Laura Carrea, Emma M. A. Dodd, Darren Ghent, Elizabeth Good, Jacob L. Høyer, John J. Kennedy, Elizabeth C. Kent, Rachel E. Killick, Paul van der Linden, Finn Lindgren, Kristine S. Madsen, Christopher J. Merchant, Joel R. Mitchelson, Colin P. Morice, Pia Nielsen-Englyst, Patricio F. Ortiz, John J. Remedios, Gerard van der Schrier, Antonello A. Squintu, Ag Stephens, Peter W. Thorne, Rasmus T. Tonboe, Tim Trent, Karen L. Veal, Alison M. Waterfall, Kate Winfield, Jonathan Winn, and R. Iestyn Woolway


Day-to-day variations in surface air temperature affect society in many ways, but daily surface air temperature measurements are not available everywhere. Therefore, a global daily picture cannot be achieved with measurements made in situ alone and needs to incorporate estimates from satellite retrievals. This article presents the science developed in the EU Horizon 2020–funded EUSTACE project (2015–19, to produce global and European multidecadal ensembles of daily analyses of surface air temperature complementary to those from dynamical reanalyses, integrating different ground-based and satellite-borne data types. Relationships between surface air temperature measurements and satellite-based estimates of surface skin temperature over all surfaces of Earth (land, ocean, ice, and lakes) are quantified. Information contained in the satellite retrievals then helps to estimate air temperature and create global fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place; this needs efficient statistical analysis methods to cope with the considerable data volumes. Daily fields are presented as ensembles to enable propagation of uncertainties through applications. Estimated temperatures and their uncertainties are evaluated against independent measurements and other surface temperature datasets. Achievements in the EUSTACE project have also included fundamental preparatory work useful to others, for example, gathering user requirements, identifying inhomogeneities in daily surface air temperature measurement series from weather stations, carefully quantifying uncertainties in satellite skin and air temperature estimates, exploring the interaction between air temperature and lakes, developing statistical models relevant to non-Gaussian variables, and methods for efficient computation.

Full access