Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: S. Richardson x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
L. Liu
,
D. Shawki
,
A. Voulgarakis
,
M. Kasoar
,
B. H. Samset
,
G. Myhre
,
P. M. Forster
,
Ø. Hodnebrog
,
J. Sillmann
,
S. G. Aalbergsjø
,
O. Boucher
,
G. Faluvegi
,
T. Iversen
,
A. KirkevaÌŠg
,
J.-F. Lamarque
,
D. Olivié
,
T. Richardson
,
D. Shindell
, and
T. Takemura

Abstract

Atmospheric aerosols such as sulfate and black carbon (BC) generate inhomogeneous radiative forcing and can affect precipitation in distinct ways compared to greenhouse gases (GHGs). Their regional effects on the atmospheric energy budget and circulation can be important for understanding and predicting global and regional precipitation changes, which act on top of the background GHG-induced hydrological changes. Under the framework of the Precipitation Driver Response Model Intercomparison Project (PDRMIP), multiple models were used for the first time to simulate the influence of regional (Asian and European) sulfate and BC forcing on global and regional precipitation. The results show that, as in the case of global aerosol forcing, the global fast precipitation response to regional aerosol forcing scales with global atmospheric absorption, and the slow precipitation response scales with global surface temperature response. Asian sulfate aerosols appear to be a stronger driver of global temperature and precipitation change compared to European aerosols, but when the responses are normalized by unit radiative forcing or by aerosol burden change, the picture reverses, with European aerosols being more efficient in driving global change. The global apparent hydrological sensitivities of these regional forcing experiments are again consistent with those for corresponding global aerosol forcings found in the literature. However, the regional responses and regional apparent hydrological sensitivities do not align with the corresponding global values. Through a holistic approach involving analysis of the energy budget combined with exploring changes in atmospheric dynamics, we provide a framework for explaining the global and regional precipitation responses to regional aerosol forcing.

Open access
Terence J. O’Kane
,
Paul A. Sandery
,
Vassili Kitsios
,
Pavel Sakov
,
Matthew A. Chamberlain
,
Dougal T. Squire
,
Mark A. Collier
,
Christopher C. Chapman
,
Russell Fiedler
,
Dylan Harries
,
Thomas S. Moore
,
Doug Richardson
,
James S. Risbey
,
Benjamin J. E. Schroeter
,
Serena Schroeter
,
Bernadette M. Sloyan
,
Carly Tozer
,
Ian G. Watterson
,
Amanda Black
,
Courtney Quinn
, and
Richard J. Matear

Abstract

The CSIRO Climate retrospective Analysis and Forecast Ensemble system, version 1 (CAFE60v1) provides a large (96 member) ensemble retrospective analysis of the global climate system from 1960 to present with sufficiently many realizations and at spatiotemporal resolutions suitable to enable probabilistic climate studies. Using a variant of the ensemble Kalman filter, 96 climate state estimates are generated over the most recent six decades. These state estimates are constrained by monthly mean ocean, atmosphere, and sea ice observations such that their trajectories track the observed state while enabling estimation of the uncertainties in the approximations to the retrospective mean climate over recent decades. For the atmosphere, we evaluate CAFE60v1 in comparison to empirical indices of the major climate teleconnections and blocking with various reanalysis products. Estimates of the large-scale ocean structure, transports, and biogeochemistry are compared to those derived from gridded observational products and climate model projections (CMIP). Sea ice (extent, concentration, and variability) and land surface (precipitation and surface air temperatures) are also compared to a variety of model and observational products. Our results show that CAFE60v1 is a useful, comprehensive, and unique data resource for studying internal climate variability and predictability, including the recent climate response to anthropogenic forcing on multiyear to decadal time scales.

Open access