Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Sally A. McFarlane x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Charles N. Long and Sally A. McFarlane

Abstract

Nauru Island at times generates low clouds that impact low-level cloud statistics and downwelling shortwave radiation measurements made at the Atmospheric Radiation Measurement Program (ARM) site. This study uses five years of Nauru data to quantify the island impact on the site measurements. The results indicate that the solar-heating-produced Nauru island effect occurs about 11% of the time during daylight hours. The island effect increases the 500–1000-m cloud base occurrence by 15%–20% when clouds occur, but because the island effect only occurs 11% of the time the overall increase in daylight low-cloud statistics is 2%, or 1% for 24-h statistics. In a similar way, the island effect produces a reduction of about 17% in the downwelling shortwave (SW) radiation across the daylight hours during the 11% of the time it occurs, an overall 2% daylight (or 1% for 24 h) average reduction. The island effect produces frequent positive downwelling SW cloud effects, in particular during the morning, which tend to somewhat mitigate the overall decrease in downwelling SW radiation that is due to clouds. This produces 17 W m−2 less daylight average SW cloud effect relative to non-island-effect times, in particular for the convectively suppressed regime that typifies island-effect-producing conditions. For long-term overall statistical studies such as model and satellite comparisons, the 2% daylight (or 1% per 24 h) average increase in low-level cloud occurrence and decrease in downwelling SW are not of large concern as long as researchers are aware of them. For shorter-term studies, however, or those that separate data by conditions such as convectively active/suppressed regimes, the Nauru island effect can have significant impacts.

Full access
Sally A. McFarlane, Charles N. Long, and Donna M. Flynn

Abstract

An Atmospheric Radiation and Cloud Station (ARCS) was established on the island of Nauru by the Atmospheric Radiation Measurement (ARM) Program. Analysis of the Nauru99 field experiment data indicated that measurements at the ARCS were affected by a cloud plume that was induced by diurnal heating of the island. During the Nauru Island Effects Study, instrumentation was installed at a second site to develop criteria for identifying when the cloud plume occurs and to quantify its effect on ARCS measurements. The plume directional heading and frequency of occurrence are affected by the large-scale tropical circulation. During the present study, in which an El Niño was developing, Nauru was in a region of active convection, and easterly trade winds were not dominant; plumes were observed in 25% of satellite images, and only one-half of the observed plumes were downwind of the ARCS site. Surface wind direction, surface air temperature, and downwelling solar radiation at the two sites were used to identify periods when the cloud plume affected surface measurements. Differences in low-cloud frequency and surface radiation between plume-affected and non-plume-affected periods were examined. Existence of the cloud plume increased the average low-cloud frequency of occurrence from 20% to 35%, decreased the average downwelling shortwave radiation by 50–60 W m−2, and increased the average downwelling longwave radiation by 5–10 W m−2. Installing a suite of surface meteorological instruments and a global shortwave radiometer at a second site will allow for the long-term quantification of the cloud plume effect on the radiation field at the ARCS site.

Full access
Sally A. McFarlane, Charles N. Long, and Julia Flaherty

Abstract

Cloud radiative effects on surface downwelling fluxes are investigated using datasets from the Atmospheric Radiation Measurement Program (ARM) sites in the tropical western Pacific Ocean (TWP) region. The Nauru Island (Republic of Nauru) and Darwin, Australia, sites show large variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) that is due to El Niño–Southern Oscillation (ENSO) and the Australian monsoon, respectively, whereas the Manus Island (Papua New Guinea) site shows little intraseasonal or interannual variability. At Nauru, the average shortwave (SW) surface CRE varies from −38.2 W m−2 during La Niña conditions to −90.6 W m−2 during El Niño conditions. The average longwave (LW) CRE ranges from 9.5 to 15.8 W m−2 during La Niña and El Niño conditions, respectively. At Manus, the average SW and LW CREs vary by less than 5 and 2 W m−2, respectively, between the ENSO phases. The variability at Darwin is even larger than at Nauru, with average SW (LW) CRE ranging from −27.0 (8.6) W m−2 in the dry season to −95.8 (17.0) W m−2 in the wet season. Cloud radar measurements of cloud-base and cloud-top heights are used to define cloud types to examine the effect of cloud type on the surface CRE. Clouds with low bases contribute 71%–75% of the surface SW CRE and 66%–74% of the surface LW CRE at the three TWP sites, clouds with midlevel bases contribute 8%–9% of the SW CRE and 12%–14% of the LW CRE, and clouds with high bases contribute 16%–19% of the SW CRE and 15%–21% of the LW CRE.

Full access