Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Sanjiv Kumar x
  • Refine by Access: All Content x
Clear All Modify Search
Yanan Duan
and
Sanjiv Kumar

Abstract

This study investigates the potential predictability of streamflow and soil moisture in the Alabama–Coosa–Tallapoosa (ACT) river basin in the southeastern United States. The study employs the state-of-the-art National Water Model (NWM) and compares the effects of initial soil moisture condition with those of seasonal climate anomalies on streamflow and soil moisture forecast skills. We have designed and implemented seasonal streamflow forecast ensemble experiments following the methodology suggested by Dirmeyer et al. The study also compares the soil moisture variability in the NWM with in situ measurements and remote sensing data from the Soil Moisture Active and Passive (SMAP) satellite. The NWM skillfully simulates the observed streamflow in the ACT basin. The soil moisture variability is 46% smaller in the NWM compared with the SMAP data, mainly due to a weaker amplitude of the seasonal cycle. This study finds that initial soil moisture condition is a major source of predictability for the seasonal streamflow forecast. The contribution of the initial soil moisture condition is comparable or even higher than that of seasonal climate anomaly effects in dry seasons. In the boreal summer season, the initial soil moisture condition contributes to 65% and 48% improvements in the seasonal streamflow and soil moisture forecast skills, respectively. This study attributes a greater improvement in the streamflow forecast skill to the lag effects between the soil moisture and streamflow anomalies. The results of this study can inform the development and improvement of the operational streamflow forecasting system.

Free access
Sanjiv Kumar
,
Matthew Newman
,
Yan Wang
, and
Ben Livneh

Abstract

Soil moisture anomalies within the root zone (roughly, soil depths down to ~0.4 m) typically persist only a few months. Consequently, land surface–related climate predictability research has often focused on subseasonal to seasonal time scales. However, in this study of multidecadal in situ datasets and land data assimilation products, we find that root zone soil moisture anomalies can recur several or more seasons after they were initiated, indicating potential interannual predictability. Lead–lag correlations show that this recurrence often happens during one fixed season and also seems related to the greater memory of soil moisture anomalies within the layer beneath the root zone, with memory on the order of several months to over a year. That is, in some seasons, notably spring and summer when the vertical soil water potential gradient reverses sign throughout much of North America, deeper soil moisture anomalies appear to return to the surface, thereby restoring an earlier root zone anomaly that had decayed. We call this process “reemergence,” in analogy with a similar seasonally varying process (with different underlying physics) providing winter-to-winter memory to the extratropical ocean surface layer. Pronounced spatial and seasonal dependence of soil moisture reemergence is found that is frequently, but not always, robust across datasets. Also, some of its aspects appear sensitive to spatial and temporal sampling, especially within the shorter available in situ datasets, and to precipitation variability. Like its namesake, soil moisture reemergence may enhance interannual-to-decadal variability, notably of droughts. Its detailed physics and role within the climate system, however, remain to be understood.

Open access
Yanan Duan
,
Sathish Akula
,
Sanjiv Kumar
,
Wonjun Lee
, and
Sepideh Khajehei

Abstract

The National Oceanic and Atmospheric Administration has developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from December 2018 to August 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics. A densely connected neural network model consisting of six layers [deep learning (DL)] is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82% ± 3%) than in the NWM-only forecast (21% ± 1%). A trade-off between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.

Significance Statement

A hybrid biophysical–artificial intelligence (physics–AI) model is developed from the first principle to estimate streamflow forecast errors at ungauged locations, improving the forecast’s reliability. The first principle refers to identifying the need for the hybrid physics–AI model, determining physically interpretable and machine identifiable model inputs, followed by the deep learning (DL) model development and its evaluations, and finally, a biophysical interpretation of the hybrid model. A very high-resolution National Water Model (NWM) forecast, developed by the National Oceanic and Atmospheric Administration, serves as the biophysical component of the hybrid model. Out of 2.7 million daily forecasts, less than 1% of the forecasts can be verified using the traditional hydrological method of comparing the forecast with the observations, motivating the need for the AI technique to improve forecast reliability at millions of ungauged locations. An exploratory analysis followed by the classification and regression tree analysis successfully determines the dependency of the forecast errors on the biophysical attributes, which along with the NWM forecast, are used for the DL model development. The hybrid model is evaluated in a subtropical humid climate of Alabama and Georgia in the United States. Long-term streamflow forecasts from zero-day lead to 30-day lead forecasts are archived and analyzed for 979 days (December 2018–August 2021) and 389 USGS gauging stations. The forecast reliability is assessed as the probability of capturing the observations in its ensemble range. As a result, the forecast reliability increased from 21% (±1%) in the NWM only forecasts to 82% (±3%) in the hybrid physics–AI model.

Open access
Sanjiv Kumar
,
Venkatesh Merwade
,
James L. Kinter III
, and
Dev Niyogi

Abstract

The authors have analyzed twentieth-century temperature and precipitation trends and long-term persistence from 19 climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This study is focused on continental areas (60°S–60°N) during 1930–2004 to ensure higher reliability in the observations. A nonparametric trend detection method is employed, and long-term persistence is quantified using the Hurst coefficient, taken from the hydrology literature. The authors found that the multimodel ensemble–mean global land–average temperature trend (0.07°C decade−1) captures the corresponding observed trend well (0.08°C decade−1). Globally, precipitation trends are distributed (spatially) at about zero in both the models and in the observations. There are large uncertainties in the simulation of regional-/local-scale temperature and precipitation trends. The models’ relative performances are different for temperature and precipitation trends. The models capture the long-term persistence in temperature reasonably well. The areal coverage of observed long-term persistence in precipitation is 60% less (32% of land area) than that of temperature (78%). The models have limited capability to capture the long-term persistence in precipitation. Most climate models underestimate the spatial variability in temperature trends. The multimodel ensemble–average trend generally provides a conservative estimate of local/regional trends. The results of this study are generally not biased by the choice of observation datasets used, including Climatic Research Unit Time Series 3.1; temperature data from Hadley Centre/Climatic Research Unit, version 4; and precipitation data from Global Historical Climatology Network, version 2.

Full access
Zaitao Pan
,
Xiaodong Liu
,
Sanjiv Kumar
,
Zhiqiu Gao
, and
James Kinter

Abstract

Some parts of the United States, especially the southeastern and central portion, cooled by up to 2°C during the twentieth century, while the global mean temperature rose by 0.6°C (0.76°C from 1901 to 2006). Studies have suggested that the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) may be responsible for this cooling, termed the “warming hole” (WH), while other works reported that regional-scale processes such as the low-level jet and evapotranspiration contribute to the abnormity. In phase 3 of the Coupled Model Intercomparison Project (CMIP3), only a few of the 53 simulations could reproduce the cooling. This study analyzes newly available simulations in experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 28 models, totaling 175 ensemble members. It was found that 1) only 19 out of 100 all-forcing historical ensemble members simulated negative temperature trend (cooling) over the southeast United States, with 99 members underpredicting the cooling rate in the region; 2) the missing of cooling in the models is likely due to the poor performance in simulating the spatial pattern of the cooling rather than the temporal variation, as indicated by a larger temporal correlation coefficient than spatial one between the observation and simulations; 3) the simulations with greenhouse gas (GHG) forcing only produced strong warming in the central United States that may have compensated the cooling; and 4) the all-forcing historical experiment compared with the natural-forcing-only experiment showed a well-defined WH in the central United States, suggesting that land surface processes, among others, could have contributed to the cooling in the twentieth century.

Full access
Kazi Ali Tamaddun
,
Ajay Kalra
,
Sanjiv Kumar
, and
Sajjad Ahmad

Abstract

This study evaluated the ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) to capture observed trends under the influence of shifts and persistence in their data distributions. A total of 41 temperature and 25 precipitation CMIP5 simulation models across 22 grid cells (2.5° × 2.5° squares) within the Colorado River basin were analyzed and compared with the Climate Research Unit Time Series (CRU-TS) observed datasets over a study period of 104 years (from 1901 to 2004). Both the modeled simulations and observations were tested for shifts, and the time series before and after the shifts were analyzed separately for trend detection and quantification. Effects of several types of persistence were accounted for prior to both the trend and shift detection tests. The mean significant shift points (SPs) of the CMIP5 temperature models across the grid cells were found to be within a narrower range (between 1957 and 1968) relative to the CRU-TS observed SPs (between 1924 and 1985). Precipitation time series, especially the CRU-TS dataset, had a lack of significant SPs, which led to an inconsistency between the models and observations since the number of grid cells with a significant SP was not comparable. The CMIP5 temperature trends, under the influence of shifts and persistence, were able to match the observed trends very satisfactorily (within the same order of magnitude and consistent direction). Unlike the temperature models, the CMIP5 precipitation models detected SPs that were earlier than the observed SPs found in the CRU-TS data. The direction (as well as the magnitude) of trends, before and after significant shifts, was found to be inconsistent between the modeled simulations and observed precipitation data. Shifts, based on their direction, were found either to strengthen or to neutralize the preexisting trends in both the model simulations and the observations. The results also suggest that the temperature and precipitation data distributions were sensitive to different types of persistence—such sensitivity was found to be consistent between the modeled and observed datasets. The study detected certain biases in the CMIP5 models in detecting the SPs (tendency of detecting shifts earlier for precipitation and later for temperature than the observed shifts) and also in quantifying the trends (overestimating the trend slopes)—such insights may be helpful in evaluating the efficacy of the simulation models in capturing observed trends under uncertainties and natural variabilities.

Full access
Arshdeep Singh
,
Sanjiv Kumar
,
Liang Chen
,
Montasir Maruf
,
Peter Lawrence
, and
Min-Hui Lo

Abstract

This study examines the effects of land-use (LU) change on regional climate, comparing historical and future scenarios using seven climate models from phase 6 of Coupled Model Intercomparison Project–Land Use Model Intercomparison Project experiments. LU changes are evaluated relative to land-use conditions during the preindustrial climate. Using the Community Earth System Model, version 2–Large Ensemble (CESM2-LE) experiment, we distinguish LU impacts from natural climate variability. We assess LU impact locally by comparing the impacts of climate change in neighboring areas with and without LU changes. Further, we conduct CESM2 experiments with and without LU changes to investigate LU-related climate processes. A multimodel analysis reveals a shift in LU-induced climate impacts, from cooling in the past to warming in the future climate across midlatitude regions. For instance, in North America, LU’s effect on air temperature changes from −0.24° ± 0.18°C historically to 0.62° ± 0.27°C in the future during the boreal summer. The CESM2-LE shows a decrease in LU-driven cooling from −0.92° ± 0.09°C in the past to −0.09° ± 0.09°C in future boreal summers in North America. A hydroclimatic perspective linking LU and climate feedback indicates LU changes causing soil moisture drying in the midlatitude regions. This contrasts with hydrology-only views showing wetter soil conditions due to LU changes. Furthermore, global warming causes widespread drying of soil moisture across various regions. Midlatitude regions shift from a historically wet regime to a water-limited transitional regime in the future climate. This results in reduced evapotranspiration, weakening LU-driven cooling in future climate projections. A strong linear relationship exists between soil moisture and evaporative fraction in midlatitudes.

Significance Statement

Land–atmosphere feedback involving soil moisture can increase local temperature and affect how land-use (LU) change impacts manifest in a warming climate. Conversely, an increased surface reflectance due to LU change can decrease local temperature in the midlatitude regions. Further, the LU change signal is often mixed with the internal climate variability, making it harder to separate. This study uses a novel technique to separate LU change impact from other climate forcing in the latest generation of climate and Earth system models. In the future climate, soil moisture drying lessens the cooling impact. A large-ensemble climate experiment analysis confirms a significant weakening of the LU-driven cooling impact in the midlatitudes. Both LU and climate changes exacerbate soil moisture drying, leading to a shift toward a water-limited system where hydrological feedback becomes more influential than radiative feedback.

Restricted access
Sanjiv Kumar
,
James Kinter III
,
Paul A. Dirmeyer
,
Zaitao Pan
, and
Jennifer Adams

Abstract

The ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models to simulate the twentieth-century “warming hole” over North America is explored, along with the warming hole’s relationship with natural climate variability. Twenty-first-century warming hole projections are also examined for two future emission scenarios, the 8.5 and 4.5 W m−2 representative concentration pathways (RCP8.5 and RCP4.5). Simulations from 22 CMIP5 climate models were analyzed, including all their ensemble members, for a total of 192 climate realizations. A nonparametric trend detection method was employed, and an alternative perspective emphasizing trend variability. Observations show multidecadal variability in the sign and magnitude of the trend, where the twentieth-century temperature trend over the eastern United States appears to be associated with low-frequency (multidecadal) variability in the North Atlantic temperatures. Most CMIP5 climate models simulate significantly lower “relative power” in the North Atlantic multidecadal oscillations than observed. Models that have relatively higher skill in simulating the North Atlantic multidecadal oscillation also are more likely to reproduce the warming hole. It was also found that the trend variability envelope simulated by multiple CMIP5 climate models brackets the observed warming hole. Based on the multimodel analysis, it is found that in the twenty-first-century climate simulations the presence or absence of the warming hole depends on future emission scenarios; the RCP8.5 scenario indicates a disappearance of the warming hole, whereas the RCP4.5 scenario shows some chance (10%–20%) of the warming hole’s reappearance in the latter half of the twenty-first century, consistent with CO2 stabilization.

Full access
Sanjiv Kumar
,
Matthew Newman
,
David M. Lawrence
,
Min-Hui Lo
,
Sathish Akula
,
Chia-Wei Lan
,
Ben Livneh
, and
Danica Lombardozzi

Abstract

The impact of land–atmosphere anomaly coupling on land variability is investigated using a new two-stage climate model experimental design called the “GLACE-Hydrology” experiment. First, as in the GLACE-CMIP5 experiment, twin sets of coupled land–atmosphere climate model (CAM5-CLM4.5) ensembles are performed, with each simulation using the same prescribed observed sea surface temperatures and radiative forcing for the years 1971–2014. In one set, land–atmosphere anomaly coupling is removed by prescribing soil moisture to follow the control model’s seasonally evolving soil moisture climatology (“land–atmosphere uncoupled”), enabling a contrast with the original control set (“land–atmosphere coupled”). Then, the atmospheric outputs from both sets of simulations are used to force land-only ensemble simulations, allowing investigation of the resulting soil moisture variability and memory under both the coupled and uncoupled scenarios. This study finds that in midlatitudes during boreal summer, land–atmosphere anomaly coupling significantly strengthens the relationship between soil moisture and evapotranspiration anomalies, both in amplitude and phase. This allows for decreased moisture exchange between the land surface and atmosphere, increasing soil moisture memory and often its variability as well. Additionally, land–atmosphere anomaly coupling impacts runoff variability, especially in wet and transition regions, and precipitation variability, although the latter has surprisingly localized impacts on soil moisture variability. As a result of these changes, there is an increase in the signal-to-noise ratio, and thereby the potential seasonal predictability, of SST-forced hydroclimate anomalies in many areas of the globe, especially in the midlatitudes. This predictability increase is greater for soil moisture than precipitation and has important implications for the prediction of drought.

Free access
Paul A. Dirmeyer
,
Sanjiv Kumar
,
Michael J. Fennessy
,
Eric L. Altshuler
,
Timothy DelSole
,
Zhichang Guo
,
Benjamin A. Cash
, and
David Straus

Abstract

The climate system model of the National Center for Atmospheric Research is used to examine the predictability arising from the land surface initialization of seasonal climate ensemble forecasts in current, preindustrial, and projected future settings. Predictability is defined in terms of the model's ability to predict its own interannual variability. Predictability from the land surface in this model is relatively weak compared to estimates from other climate models but has much of the same spatial and temporal structure found in previous studies. Several factors appear to contribute to the weakness, including a low correlation between surface fluxes and subsurface soil moisture, less soil moisture memory (lagged autocorrelation) than other models or observations, and relative insensitivity of the atmospheric boundary layer to surface flux variations. Furthermore, subseasonal cyclical behavior in plant phenology for tropical grasses introduces spurious unrealistic predictability at low latitudes during dry seasons. Despite these shortcomings, intriguing changes in predictability are found. Areas of historical land use change appear to have experienced changes in predictability, particularly where agriculture expanded dramatically into the Great Plains of North America, increasing land-driven predictability there. In a warming future climate, land–atmosphere coupling strength generally increases, but added predictability does not always follow; many other factors modulate land-driven predictability.

Full access