Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Sara A. Rauscher x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Sara A. Rauscher
,
Fred Kucharski
, and
David B. Enfield

Abstract

This paper addresses several hypotheses designed to explain why AOGCM simulations of future climate in the third phase of the Coupled Model Intercomparison Project (CMIP3) feature an intensified reduction of precipitation over the Meso-America (MA) region. While the drying is consistent with an amplification of the subtropical high pressure cells and an equatorward contraction of convective regions due to the “upped ante” for convection in a warmer atmosphere, the physical mechanisms behind the intensity and robustness of the MA drying signal have not been fully explored. Regional variations in sea surface temperature (SST) warming may play a role. First, SSTs over the tropical North Atlantic (TNA) do not warm as much as the surrounding ocean. The troposphere senses a TNA that is cooler than the tropical Pacific, potentially exciting a Gill-type response, increasing the strength of the North Atlantic subtropical high. Second, the warm ENSO-like state simulated in the eastern tropical Pacific could decrease precipitation over MA, as warm ENSO events are associated with drying over MA.

The authors use the International Centre for Theoretical Physics (ICTP) AGCM to investigate the effects of these regional SST warming variations on the projected drying over MA. First, the change of SSTs [Special Report on Emissions Scenarios (SRES) A1B’s Twentieth-Century Climate in Coupled Model (A1B-20C)] in the ensemble average of the CMIP3 models is applied to determine if the ICTP AGCM can replicate the future drying. Then the effects of 1) removing the reduced warming over the TNA, 2) removing the warm ENSO-event-like pattern in the eastern tropical Pacific, and 3) applying uniform SST warming throughout the tropics are tested. The ICTP AGCM can reproduce the general pattern and amount of precipitation over MA. Simulations in which the CMIP3 A1B-20C ensemble-average SSTs are added to climatological SSTs show drying of more than 20% over the MA region, similar to the CMIP3 ensemble average. Replacing the relatively cooler SSTs over the TNA excites a Gill response consistent with an off-equatorial heating anomaly, showing that the TNA relative cooling is responsible for about 16% (31%) of the drying in late spring (early summer). The warm ENSO-like SST pattern over the eastern Pacific also affects precipitation over the MA region, with changes of 19% and 31% in March–June (MMJ) and June–August (JJA), respectively. This work highlights the importance of understanding even robust signals in the CMIP3 future scenario simulations, and should aid in the design and analysis of future climate change studies over the region.

Full access
Qing Yang
,
L. Ruby Leung
,
Sara A. Rauscher
,
Todd D. Ringler
, and
Mark A. Taylor

Abstract

This study investigates the moisture budgets and resolution dependency of precipitation extremes in an aquaplanet framework based on the Community Atmosphere Model, version 4 (CAM4). Moisture budgets from simulations using two different dynamical cores, the Model for Prediction Across Scales-Atmosphere (MPAS-A) and High Order Method Modeling Environment (HOMME), but the same physics parameterizations suggest that during precipitation extremes the intensity of precipitation is approximately balanced by the vertical advective moisture transport. The resolution dependency in extremes from simulations at their native grid resolution originates from that of vertical moisture transport, which is mainly explained by changes in dynamics (related to vertical velocity ω) with resolution. When assessed at the same grid scale by area-weighted averaging the fine-resolution simulations to the coarse grids, simulations with either dynamical core still demonstrate resolution dependency in extreme precipitation with no convergence over the tropics, but convergence occurs at a wide range of latitudes over the extratropics. The use of lower temporal frequency data (i.e., daily vs 6 hourly) reduces the resolution dependency. Although thermodynamic (moisture) changes become significant in offsetting the effect of dynamics when assessed at the same grid scale, especially over the extratropics, changes in dynamics with resolution are still large and explain most of the resolution dependency during extremes. This suggests that the effects of subgrid-scale variability of ω and vertical moisture transport during extremes are not adequately parameterized by the model at coarse resolution. The aquaplanet framework and analysis described in this study provide an important metric for assessing sensitivities of cloud parameterizations to spatial resolution and dynamical cores under extreme conditions.

Full access
Sara A. Rauscher
,
Todd D. Ringler
,
William C. Skamarock
, and
Arthur A. Mirin

Abstract

Results from aquaplanet experiments performed using the Model for Prediction across Scales (MPAS) hydrostatic dynamical core implemented within the Department of Energy (DOE)–NCAR Community Atmosphere Model (CAM) are presented. MPAS is an unstructured-grid approach to climate system modeling that supports both quasi-uniform and variable-resolution meshing of the sphere based on conforming grids. Using quasi-uniform simulations at resolutions of 30, 60, 120, and 240 km, the authors evaluate the performance of CAM-MPAS via its kinetic energy spectra, general circulation, and precipitation characteristics. By analyzing an additional variable-resolution simulation with grid spacing that varies from 30 km in a spherical, continental-sized equatorial region to 240 km elsewhere, the CAM-MPAS’s potential for use as a regional climate simulation tool is explored.

Similar to other quasi-uniform aquaplanet simulations, tropical precipitation increases with resolution, indicating the resolution sensitivity of the physical parameterizations. Comparison with the finite volume (FV) dynamical core suggests a weaker tropical circulation in the CAM-MPAS simulations, which is evident in reduced tropical precipitation and a weaker Hadley circulation. In the variable-resolution simulation, the kinetic energy spectrum within the high-resolution region closely resembles the quasi-uniform 30-km simulation, indicating a robust simulation of the fluid dynamics. As suggested by the quasi-uniform simulations, the CAM4 physics behave differently in the high and low resolution regions. A positive precipitation anomaly occurs on the western edge of the high-resolution region, exciting a Gill-type response; this zonal asymmetry represents the errors incurred in a variable resolution setting. When paired with a multiresolution mesh, the aquaplanet test case offers an exceptional opportunity to examine the response of physical parameterizations to grid resolution.

Full access
Anji Seth
,
Sara A. Rauscher
,
Michela Biasutti
,
Alessandra Giannini
,
Suzana J. Camargo
, and
Maisa Rojas

Abstract

Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) experiments show that the global monsoon is expected to increase in area, precipitation, and intensity as the climate system responds to anthropogenic forcing. Concurrently, detailed analyses for several individual monsoons indicate a redistribution of rainfall from early to late in the rainy season. This analysis examines CMIP5 projected changes in the annual cycle of precipitation in monsoon regions, using a moist static energy framework to evaluate competing mechanisms identified to be important in precipitation changes over land. In the presence of sufficient surface moisture, the local response to the increase in downwelling energy is characterized by increased evaporation, increased low-level moist static energy, and decreased stability with consequent increases in precipitation. A remote mechanism begins with warmer oceans and operates on land regions via a warmer tropical troposphere, increased stability, and decreased precipitation. The remote mechanism controls the projected changes during winter, and the local mechanism controls the switch to increased precipitation during summer in most monsoon regions. During the early summer transition, regions where boundary layer moisture availability is reduced owing to decreases in evaporation and moisture convergence experience an enhanced convective barrier. Regions characterized by adequate evaporation and moisture convergence do not experience reductions in early summer precipitation.

This enhanced convective barrier leads to a redistribution of rainfall from early to late summer, and is robust in the American and African monsoons but muddled in Asia. As described here, viewing monsoons from their inherent ties to the annual cycle could help to fingerprint changes as they evolve.

Full access
Travis A. O'Brien
,
Fuyu Li
,
William D. Collins
,
Sara A. Rauscher
,
Todd D. Ringler
,
Mark Taylor
,
Samson M. Hagos
, and
L. Ruby Leung

Abstract

Observations of robust scaling behavior in clouds and precipitation are used to derive constraints on how partitioning of precipitation should change with model resolution. Analysis indicates that 90%–99% of stratiform precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200-km or finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with resolution, such that effectively all stratiform precipitation should be resolvable above scales of ~50 km. It is shown that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting model (WRF) also exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with multiple dynamical cores provides strong evidence that this “scale-incognizant” behavior originates in one of the CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations, and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization. Tests with the CAM5 physics package show improvements in the resolution dependence of resolved cloud fraction and resolved stratiform precipitation fraction.

Full access
Sara A. Rauscher
,
Xiaoyan Jiang
,
Allison Steiner
,
A. Park Williams
,
D. Michael Cai
, and
Nathan G. McDowell

Abstract

Recent modeling studies of future vegetation change suggest the potential for large-scale forest die-off in the tropics. Taken together with observational evidence of increasing tree mortality in numerous ecosystem types, there is clearly a need for projections of vegetation change. To that end, the authors have performed an ensemble of climate–vegetation experiments with the National Science Foundation–DOE Community Atmosphere Model (CAM) coupled to the Community Land Model (CAM–CLM-CN) with its dynamic vegetation model enabled (CAM–CLM-CNDV). To overcome the limitations of using a single model, the authors employ the sea surface temperature (SST) warming patterns simulated by eight different models from the Coupled Model Intercomparison Program phase 3 (CMIP3) as boundary conditions. Since the SST warming pattern in part dictates how precipitation may change in the future, in this way a range of future vegetation–climate trajectories can be produced.

On an annual average basis, this study’s CAM–CLM-CN simulations do not produce as large a spread in projected precipitation as the original CMIP3 archive. These differences are due to the tendency of CAM–CLM-CN to increase tropical precipitation under a global warming scenario, although this response is modulated by the SST warming patterns imposed. However, the CAM–CLM-CN simulations reproduce the enhanced dry season in the tropics simulated by CMIP3. These simulations show longer fire seasons and increases in fractional area burned. In one ensemble member, extreme droughts over tropical South America lead to fires that remove vegetation cover in the eastern Amazon, suggesting that large-scale die-offs are an unlikely but still possible event.

Full access
Kiranmayi Landu
,
L. Ruby Leung
,
Samson Hagos
,
V. Vinoj
,
Sara A. Rauscher
,
Todd Ringler
, and
Mark Taylor

Abstract

Aquaplanet simulations using the Community Atmosphere Model, version 4 (CAM4), with the Model for Prediction Across Scales–Atmosphere (MPAS-A) and High-Order Method Modeling Environment (HOMME) dynamical cores and using zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the intertropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2°–3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks between convection and large-scale circulation. It is shown that the difference in specific humidity between HOMME and MPAS-A can lead to different latitudinal distributions of the convective available potential energy (CAPE) by influencing latent heat release by clouds and the upper-tropospheric temperature. With lower specific humidity, the high-resolution MPAS-A simulation has CAPE increasing away from the equator that enhances convection away from the equator and, through a positive feedback on the circulation, results in a double ITCZ structure. In addition, it is shown that the dominance of antisymmetric waves in the model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.

Full access
Koichi Sakaguchi
,
L. Ruby Leung
,
Chun Zhao
,
Qing Yang
,
Jian Lu
,
Samson Hagos
,
Sara A. Rauscher
,
Li Dong
,
Todd D. Ringler
, and
Peter H. Lauritzen

Abstract

This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales–Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999–2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate.

Full access
Xiaoyan Jiang
,
Sara A. Rauscher
,
Todd D. Ringler
,
David M. Lawrence
,
A. Park Williams
,
Craig D. Allen
,
Allison L. Steiner
,
D. Michael Cai
, and
Nate G. McDowell

Abstract

Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.

Full access