Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Scott M. Ellis x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Evan A. Kalina
,
Katja Friedrich
,
Scott M. Ellis
, and
Donald W. Burgess

Abstract

Microphysical data from thunderstorms are sparse, yet they are essential to validate microphysical schemes in numerical models. Mobile, dual-polarization, X-band radars are capable of providing a wealth of data that include radar reflectivity, drop shape, and hydrometeor type. However, X-band radars suffer from beam attenuation in heavy rainfall and hail, which can be partially corrected with attenuation correction schemes. In this research, the authors compare surface disdrometer observations to results from a differential phase-based attenuation correction scheme. This scheme is applied to data recorded by the National Oceanic and Atmospheric Administration (NOAA) X-band dual-polarized (NOXP) mobile radar, which was deployed during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Results are presented from five supercell thunderstorms and one squall line (183 min of data). The median disagreement (radar–disdrometer) in attenuation-corrected reflectivity Z and differential reflectivity Z DR is just 1.0 and 0.19 dB, respectively. However, two data subsets reveal much larger discrepancies in Z (Z DR): 5.8 (1.6) dB in a hailstorm and −13 (−0.61) dB when the radar signal quality index (SQI) is less than 0.8. The discrepancies are much smaller when disdrometer and S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) Z are compared, with differences of −1.5 dB (hailstorm) and −0.66 dB (NOXP SQI < 0.8). A comparison of the hydrometeor type retrieved from disdrometer and NOXP radar data is also presented, in which the same class is assigned 63% of the time.

Full access
Phuong-Nghi Do
,
Kao-Shen Chung
,
Pay-Liam Lin
,
Ching-Yin Ke
, and
Scott M. Ellis

Abstract

This study investigated the effect of the assimilation of the S- and Ka-band dual‐wavelength-retrieved water vapor data with radial wind and reflectivity data. The vertical profile of humidity, which provides environmental information before precipitation occurs, was obtained at low levels and thinned into averaged and four-quadrant profiles. Additionally, the following two strategies were examined: 1) assimilation of water vapor data with radar data for the entire 2 h and 2) assimilation of water vapor data in the first hour, and radial velocity and reflectivity data in the second hour. By using the WRF local ensemble transform Kalman filter data assimilation system, three real cases of the Dynamics of the Madden–Julian Oscillation experiment were examined through a series of experiments. The analysis results revealed that assimilating additional water vapor data more markedly improved the analysis at the convective scale than assimilating radial wind and reflectivity data alone. In addition, the strategy of assimilating only retrieved water vapor data in the first hour and radial wind and reflectivity data in the second hour achieved the optimal analysis and subsequent very short-term forecast. The evaluation of quantitative precipitation forecasting demonstrated that assimilating additional retrieved water vapor data distinctly improved the rain forecast compared with assimilating radar data only. When moisture data were assimilated, improved nowcasting could be extended up to 4 h. Furthermore, assimilating moisture profiles into four quadrants achieved more accurate analysis and forecast. Overall, our study demonstrated that the humidify information in nonprecipitation areas is critical for further improving the analysis and forecast of convective weather systems.

Open access