Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Sethu Raman x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Ching-Yuang Huang
Sethu Raman


A three-dimensional mesoscale planetary boundary layer (PBL) numerical model is used to investigate mesoscale circulations over the Carolina coastal and Gulf Stream baroclinic zones. Idealized ambient onshore and offshore flows are investigated, which represent the synoptic conditions during the Intensive Observation Period-2 (IOP-2) of the 1986 Genesis of Atlantic Lows Experiment (GALE). For the easterly onshore flow, a confluence zone appears west of the Gulf Stream in response to the effect of the oceanic baroclinicity. The confluence zone is nearly parallel to the coastline and the SST isotherms, with northeasterly (southwesterly) flow to the west (east). A shallow coastal front forms below 2 km as the cyclonic shear of the ageostrophic flow becomes strong. Quasi-stationary rainbands are produced by cumulus convection along the coastal front. The northern part of the front and the rainbands later encroach inland as the cold air intensity over ground weakens due to onshore warm air advection. The modeled coastal circulation is in agreement with the observations, suggesting that differential boundary-layer modification may be the main mechanism for the formation of the coastal front. The existence of an onshore ambient flow appears to be a necessary condition for the presence of the Coastal front. For the northerly offshore ambient flow, the rainband therefore appears along the eastern edge of the Gulf Stream, which then moves slowly downstream in response to the generated atmospheric baroclinicity. For both flows, the development of the rainbands is sensitive to variations in eddy Prandtl number, and their growth rate can be explained in terms of conditional symmetric instability.

Full access
Jainn Jong Shi
Simon Chang
, and
Sethu Raman


The Naval Research Laboratory’s limited-area numerical prediction system, a version of Navy Operational Regional Atmospheric Prediction System, was used to investigate the interaction between Hurricane Florence (1988) and its upper-tropospheric environment. The model was initialized with the National Meteorological Center (now the National Centers for Environmental Prediction)/Regional Analysis and Forecasting Systems 2.5° analysis at 0000 UTC 9 September 1988, enhanced by a set of Omega dropwindsonde data through a three-pass nested-grid objective analysis.

Diagnosis of the 200-mb level structure of the 12-h forecast valid for 1200 UTC 9 September 1988 showed that the outflow layer was highly asymmetric with an outflow jet originating at approximately 3° north of the storm. In agreement with the result of an idealized simulation (), there was a thermally direct, circum-jet secondary circulation in the jet entrance region and a thermally indirect one in a reversed direction in the jet exit region. In several previous studies, it was postulated that an approaching westerly jet had modulated the convection and intensity variations of Florence. In a variational numerical experiment in this study, the approaching westerly jet was flattened out by repeatedly setting the jet-level meridional wind component and zonal temperature perturbations to zero in the normal mode initialization procedure. Compared with the control experiment, the variational experiment showed that the sudden burst of Florence’s inner core convection was highly correlated with the approaching upper-tropospheric westerly jet. These experiments also suggested that the approaching upper-tropospheric westerly jet was crucial to the intensification of Florence’s inner core convection between 1000 and 1500 UTC 9 September, which occurred prior to the deepening of the minimum sea level pressure (from 997 to 987 mb) between 1200 UTC 9 September and 0000 UTC 10 September.

Many earlier studies have attempted an explanation for the effect on tropical cyclones of upper-tropospheric forcings from the eddy angular momentum approach. The result of this study provides an alternative but complementary mechanism of the interaction between an upper-level westerly trough and a tropical cyclone.

Full access