Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Seung-Hee Ham x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Seiji Kato
,
Fred G. Rose
,
David A. Rutan
,
Tyler J. Thorsen
,
Norman G. Loeb
,
David R. Doelling
,
Xianglei Huang
,
William L. Smith
,
Wenying Su
, and
Seung-Hee Ham

Abstract

The algorithm to produce the Clouds and the Earth’s Radiant Energy System (CERES) Edition 4.0 (Ed4) Energy Balanced and Filled (EBAF)-surface data product is explained. The algorithm forces computed top-of-atmosphere (TOA) irradiances to match with Ed4 EBAF-TOA irradiances by adjusting surface, cloud, and atmospheric properties. Surface irradiances are subsequently adjusted using radiative kernels. The adjustment process is composed of two parts: bias correction and Lagrange multiplier. The bias in temperature and specific humidity between 200 and 500 hPa used for the irradiance computation is corrected based on observations by Atmospheric Infrared Sounder (AIRS). Similarly, the bias in the cloud fraction is corrected based on observations by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat. Remaining errors in surface, cloud, and atmospheric properties are corrected in the Lagrange multiplier process. Ed4 global annual mean (January 2005 through December 2014) surface net shortwave (SW) and longwave (LW) irradiances increase by 1.3 W m−2 and decrease by 0.2 W m−2, respectively, compared to EBAF Edition 2.8 (Ed2.8) counterparts (the previous version), resulting in an increase in net SW + LW surface irradiance of 1.1 W m−2. The uncertainty in surface irradiances over ocean, land, and polar regions at various spatial scales are estimated. The uncertainties in all-sky global annual mean upward and downward shortwave irradiance are 3 and 4 W m−2, respectively, and the uncertainties in upward and downward longwave irradiance are 3 and 6 W m−2, respectively. With an assumption of all errors being independent, the uncertainty in the global annual mean surface LW + SW net irradiance is 8 W m−2.

Open access
Norman G. Loeb
,
Ping Yang
,
Fred G. Rose
,
Gang Hong
,
Sunny Sun-Mack
,
Patrick Minnis
,
Seiji Kato
,
Seung-Hee Ham
,
William L. Smith Jr.
,
Souichiro Hioki
, and
Guanglin Tang

Abstract

Ice cloud particles exhibit a range of shapes and sizes affecting a cloud’s single-scattering properties. Because they cannot be inferred from passive visible/infrared imager measurements, assumptions about the bulk single-scattering properties of ice clouds are fundamental to satellite cloud retrievals and broadband radiative flux calculations. To examine the sensitivity to ice particle model assumptions, three sets of models are used in satellite imager retrievals of ice cloud fraction, thermodynamic phase, optical depth, effective height, and particle size, and in top-of-atmosphere (TOA) and surface broadband radiative flux calculations. The three ice particle models include smooth hexagonal ice columns (SMOOTH), roughened hexagonal ice columns, and a two-habit model (THM) comprising an ensemble of hexagonal columns and 20-element aggregates. While the choice of ice particle model has a negligible impact on daytime cloud fraction and thermodynamic phase, the global mean ice cloud optical depth retrieved from THM is smaller than from SMOOTH by 2.3 (28%), and the regional root-mean-square difference (RMSD) is 2.8 (32%). Effective radii derived from THM are 3.9 μm (16%) smaller than SMOOTH values and the RMSD is 5.2 μm (21%). In contrast, the regional RMSD in TOA and surface flux between THM and SMOOTH is only 1% in the shortwave and 0.3% in the longwave when a consistent ice particle model is assumed in the cloud property retrievals and forward radiative transfer model calculations. Consequently, radiative fluxes derived using a consistent ice particle model assumption throughout provide a more robust reference for climate model evaluation compared to ice cloud property retrievals.

Open access