Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Shanshan Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Lei Wang, Zhi-Jun Yao, Li-Guang Jiang, Rui Wang, Shan-Shan Wu, and Zhao-Fei Liu


The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods, and snowstorms, were also investigated for the same period. The correlations between catastrophic events and the extreme indices were examined. The results show that the Mongolian Plateau experienced an asymmetric warming trend. Both the cold extremes and warm extremes showed greater warming at night than in the daytime. The spatial changes in significant trends showed a good homogeneity and consistency in Inner Mongolia. Changes in the precipitation extremes were not as obvious as those in the temperature extremes. The spatial distributions in changes of precipitation extremes were complex. A decreasing trend was shown for total precipitation from west to east as based on the spatial distribution of decadal trends. Drought was the most serious extreme disaster, and prolonged drought for longer than 3 yr occurred about every 7–11 yr. An increasing trend in the disaster area was apparent for flood events from 1951 to 2012. A decreasing trend was observed for the maximum depth of snowfall from 1951 to 2012, with a decreased average maximum depth of 10 mm from the 1990s.

Full access
Yaohui Li, Xing Yuan, Hongsheng Zhang, Runyuan Wang, Chenghai Wang, Xianhong Meng, Zhiqiang Zhang, Shanshan Wang, Yang Yang, Bo Han, Kai Zhang, Xiaoping Wang, Hong Zhao, Guangsheng Zhou, Qiang Zhang, Qing He, Ni Guo, Wei Hou, Cunjie Zhang, Guoju Xiao, Xuying Sun, Ping Yue, Sha Sha, Heling Wang, Tiejun Zhang, Jinsong Wang, and Yubi Yao


A major experimental drought research project entitled “Mechanisms and Early Warning of Drought Disasters over Northern China” (DroughtEX_China) was launched by the Ministry of Science and Technology of China in 2015. The objective of DroughtEX_China is to investigate drought disaster mechanisms and provide early-warning information via multisource observations and multiscale modeling. Since the implementation of DroughtEX_China, a comprehensive V-shape in situ observation network has been established to integrate different observational experiment systems for different landscapes, including crops in northern China. In this article, we introduce the experimental area, observational network configuration, ground- and air-based observing/testing facilities, implementation scheme, and data management procedures and sharing policy. The preliminary observational and numerical experimental results show that the following are important processes for understanding and modeling drought disasters over arid and semiarid regions: 1) the soil water vapor–heat interactions that affect surface soil moisture variability, 2) the effect of intermittent turbulence on boundary layer energy exchange, 3) the drought–albedo feedback, and 4) the transition from stomatal to nonstomatal control of plant photosynthesis with increasing drought severity. A prototype of a drought monitoring and forecasting system developed from coupled hydroclimate prediction models and an integrated multisource drought information platform is also briefly introduced. DroughtEX_China lasted for four years (i.e., 2015–18) and its implementation now provides regional drought monitoring and forecasting, risk assessment information, and a multisource data-sharing platform for drought adaptation over northern China, contributing to the global drought information system (GDIS).

Open access