Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Shawn M. Milrad x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

Tropical cyclones in the western North Atlantic basin are a persistent threat to human interests along the east coast of North America. Occurring mainly during the late summer and early autumn, these storms often cause strong winds and extreme rainfall and can have a large impact on the weather of eastern Canada. From 1979 to 2005, 40 named (by the National Hurricane Center) tropical cyclones tracked over eastern Canada. Based on the time tendency of the low-level (850–700 hPa) vorticity, the storms are partitioned into two groups: “intensifying” and “decaying.” The 16 intensifying and 12 decaying cases are then analyzed using data from both the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and the NCEP global reanalysis. Composite dynamical structures are presented for both partitioned groups, utilizing both quasigeostrophic (QG) and potential vorticity (PV) perspectives. It is found that the proximity to the tropical cyclone and subsequent negative tilt (or lack thereof) of a precursor trough over the Great Lakes region is crucial to whether a storm “intensifies” or “decays.” Heavy precipitation is often the main concern when tropical cyclones move northward into the midlatitudes. Therefore, analyses of storm-relative precipitation distributions show that storms intensifying (decaying) as they move into the midlatitudes often exhibit a counterclockwise (clockwise) rotation of precipitation around the storm center.

Full access
Jessica K. Turner
,
John Gyakum
, and
Shawn M. Milrad

Abstract

Northwestern Canada is a genesis region of arctic air masses often considered to be formed primarily through radiative processes. However, the details of their life cycle are poorly understood. This paper examines the formation, maintenance, and dissipation of an intense and long-lived arctic air mass, using a thermodynamic budget analysis.

The airmass formation is characterized by a deep-layer, multistage process that begins with snow falling into a nascent air mass. Radiative cooling from cloud tops begins the process. After the snow abates and clear skies are observed, the surface temperature drops rapidly, aided by the high emissivity of fresh snow cover, falling 17°C in two days, creating an intense but shallow temperature inversion. Once the surface temperature falls below the frost point, ice crystals form. Afterward, although the surface temperature remains constant, the height of the inversion rises, as radiative cooling at the top of the ice fog layer decreases temperatures.

During the maintenance phase, a cold-air damming structure is present with an anticyclone in the lee of the Canadian Rockies, low pressure in the Gulf of Alaska, and an intense baroclinic zone parallel to the mountains, separating warmer maritime air from colder continental air. The air mass persists for 12 days, undergoing several cycles of deep-layer weakening and intensification.

Full access
Shawn M. Milrad
,
John R. Gyakum
, and
Eyad H. Atallah

Abstract

The 19–21 June 2013 Alberta flood was the costliest (CAD $6 billion) natural disaster in Canadian history. The flood was caused by a combination of above-normal spring snowmelt in the Canadian Rockies, large antecedent precipitation, and an extreme rainfall event on 19–21 June that produced rainfall totals of 76 mm in Calgary and 91 mm in the foothills. As is typical of flash floods along the Front Range of the Rocky Mountains, rapidly rising streamflow proceeded to move downhill (eastward) into Calgary.

A meteorological analysis traces an antecedent Rossby wave train across the North Pacific Ocean, starting with intense baroclinic development over East Asia on 11 June. Subsequently, downstream Rossby wave development occurred across the North Pacific; a 1032-hPa subtropical anticyclone located northeast of Hawaii initiated a southerly atmospheric river into Alaska, which contributed to the development of a cutoff anticyclone over Alaska and a Rex block (ridge to the north, cyclone to the south) in the northeastern North Pacific. Upon breakdown of the Rex block, lee cyclogenesis occurred in Montana and strong easterly upslope flow was initiated in southern Alberta.

The extreme rainfall event was produced in association with a combination of quasigeostrophically and orographically forced ascent, which acted to release conditional and convective instability. As in past Front Range flash floods, moisture flux convergence and positive θ e advection were collocated with the heavy rainfall. Backward trajectories show that air parcels originated in the northern U.S. plains, suggesting that evapotranspiration from the local land surface may have acted as a moisture source.

Full access
Lisa M. Hryciw
,
Eyad H. Atallah
,
Shawn M. Milrad
, and
John R. Gyakum

Abstract

Drought is a complex natural hazard that is endemic to the Canadian prairies. The 1999–2005 Canadian prairie drought, which had great socioeconomic impacts, was meteorologically unique in that it did not conform to the traditional persistent positive Pacific–North American (PNA) pattern and west coast ridging paradigm normally associated with prairie drought. The purpose of this study is to diagnose the unique synoptic-scale mechanisms responsible for modulating subsidence during this drought. Using 30-day running means of the percent of normal precipitation from station data, key severe dry periods during 1999–2005 are identified. Analysis of the mean fields from reanalysis data shows that these dry events can be grouped into three upper-level flow categories: amplified warm, amplified cold, and zonal. Amplified warm cases match the traditional ridging paradigm, while amplified cold and zonal cases elucidate the fact that cold-air advection and downsloping flow, respectively, can also be important subsidence mechanisms during a Canadian prairie drought. In all, the 1999–2005 drought was more meteorologically complex on the synoptic scale than previous historic prairie droughts. Finally, a brief historical perspective shows that the drought was centered in 2001–02 and was not as severe as historical droughts, suggesting that societal vulnerability also played a substantial role in the impacts of the 1999–2005 drought.

Full access
Shawn M. Milrad
,
Kelly Lombardo
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The 19–21 June 2013 Alberta flood was the second costliest ($6 billion CAD) natural disaster in Canadian history, trailing only the 2016 Fort McMurray, Alberta, Canada, wildfires. One of the primary drivers was an extreme rainfall event that resulted in 75–150 mm of precipitation in the foothills west of Calgary, Canada. Here, the mesoscale dynamics and thermodynamics that contributed to the extreme rainfall event are elucidated through high-resolution numerical model simulations. In addition, terrain reduction model sensitivity experiments using Gaussian smoothing techniques quantify the importance of orography in producing the extreme rainfall event. It is suggested that the extreme rainfall event was initially characterized by the formation of a surface cyclone on the eastern side of the Canadian Rockies due to quasigeostrophic (QG) mechanisms. Orographic processes and diabatic heating feedbacks maintained the surface cyclone throughout the event, extending the duration of both easterly upslope flow and QG forcing for ascent in the flood region. The long-duration ascent and associated condensational heat release in the flood region vertically redistributed potential vorticity, anchoring and further extending the duration of the surface cyclone, upslope flow, and the rainfall. Although the magnitudes of ascent and precipitation were smaller in 10% and 25% reduced terrain simulations, only a terrain reduction of greater than 25% drastically altered the location and magnitude of the heaviest precipitation and the associated physical mechanisms.

Full access
Clark Evans
,
Kimberly M. Wood
,
Sim D. Aberson
,
Heather M. Archambault
,
Shawn M. Milrad
,
Lance F. Bosart
,
Kristen L. Corbosiero
,
Christopher A. Davis
,
João R. Dias Pinto
,
James Doyle
,
Chris Fogarty
,
Thomas J. Galarneau Jr.
,
Christian M. Grams
,
Kyle S. Griffin
,
John Gyakum
,
Robert E. Hart
,
Naoko Kitabatake
,
Hilke S. Lentink
,
Ron McTaggart-Cowan
,
William Perrie
,
Julian F. D. Quinting
,
Carolyn A. Reynolds
,
Michael Riemer
,
Elizabeth A. Ritchie
,
Yujuan Sun
, and
Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access