Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Shuting Yang x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Brian Reinhold
and
Shuting Yang

Abstract

Transition of weather regimes is examined in a highly simplified model. Two completely distinct internal methods of transition are identified. The first is a synoptically triggered large-scale instability, while the second is an energy inconsistency between the large-scale and synoptic scales that does not allow the two scales to equilibrate. In the atmosphere, the first case appears as a sudden propagation and damping (or vice versa) of the large-scale pattern with no obvious warning, while the second is consistent with the synoptician's description of a regime being disrupted by a single catastrophic event such as explosive cyclogenesis. The first method is always fast (on a synoptic time scale), while the second does not have to be, though often is. By examining what causes the regimes to fail, one can better understand the role of the transients during all phases of weather regimes.

Full access
Shuting Yang
,
Brian Reinhold
, and
Erland Källén

Abstract

Systematically recurrent, geographically fixed weather regimes forced by a single isolated mountain in a two-layer, high-resolution, quasigeostrophic model modified for the sphere are found to be robust phenomena. While the climatological stationary wave is often confined to (or has maximum amplitude in) the region just downstream of the orography, giving the appearance of a wave train propagating into the Tropics, the regional maximum centers of low-frequency variance appear around the hemisphere, giving the appearance of zonal resonance or some type of zonally confined propagation. This result is not anticipated in light of Rossby wave dispersion theory on the sphere. On the other hand, baroclinic disturbances developing on a meridional temperature gradient of finite extent force subtropical and polar easterlies as well as a sharpened midlatitude westerly jet, which provides a zonal waveguide (by refraction and/or reflection) for the Rossby waves. These conditions are favorable for the establishment of multiple weather regimes. The baroclinicity of the atmosphere is then continuously forcing a mean state that favors forced zonal propagation, counteracting the meridional dispersion generated by the spherical geometry alone. These ideas suggest that the multiple-equilibria theories may be more applicable to the atmosphere than originally suggested by linear dispersion theory on the sphere. It may also help explain why channel models work as well as they do even for the largest scales.

Full access