Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Shuting Yang x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas Jung
,
Francisco Doblas-Reyes
,
Helge Goessling
,
Virginie Guemas
,
Cecilia Bitz
,
Carlo Buontempo
,
Rodrigo Caballero
,
Erko Jakobson
,
Johann Jungclaus
,
Michael Karcher
,
Torben Koenigk
,
Daniela Matei
,
James Overland
,
Thomas Spengler
, and
Shuting Yang
Full access
Maria Rugenstein
,
Jonah Bloch-Johnson
,
Ayako Abe-Ouchi
,
Timothy Andrews
,
Urs Beyerle
,
Long Cao
,
Tarun Chadha
,
Gokhan Danabasoglu
,
Jean-Louis Dufresne
,
Lei Duan
,
Marie-Alice Foujols
,
Thomas Frölicher
,
Olivier Geoffroy
,
Jonathan Gregory
,
Reto Knutti
,
Chao Li
,
Alice Marzocchi
,
Thorsten Mauritsen
,
Matthew Menary
,
Elisabeth Moyer
,
Larissa Nazarenko
,
David Paynter
,
David Saint-Martin
,
Gavin A. Schmidt
,
Akitomo Yamamoto
, and
Shuting Yang

Abstract

We present a model intercomparison project, LongRunMIP, the first collection of millennial-length (1,000+ years) simulations of complex coupled climate models with a representation of ocean, atmosphere, sea ice, and land surface, and their interactions. Standard model simulations are generally only a few hundred years long. However, modeling the long-term equilibration in response to radiative forcing perturbation is important for understanding many climate phenomena, such as the evolution of ocean circulation, time- and temperature-dependent feedbacks, and the differentiation of forced signal and internal variability. The aim of LongRunMIP is to facilitate research into these questions by serving as an archive for simulations that capture as much of this equilibration as possible. The only requirement to participate in LongRunMIP is to contribute a simulation with elevated, constant CO2 forcing that lasts at least 1,000 years. LongRunMIP is an MIP of opportunity in that the simulations were mostly performed prior to the conception of the archive without an agreed-upon set of experiments. For most models, the archive contains a preindustrial control simulation and simulations with an idealized (typically abrupt) CO2 forcing. We collect 2D surface and top-of-atmosphere fields and 3D ocean temperature and salinity fields. Here, we document the collection of simulations and discuss initial results, including the evolution of surface and deep ocean temperature and cloud radiative effects. As of October 2019, the collection includes 50 simulations of 15 models by 10 modeling centers. The data of LongRunMIP are publicly available. We encourage submissions of more simulations in the future.

Full access

EC-Earth

A Seamless Earth-System Prediction Approach in Action

Wilco Hazeleger
,
Camiel Severijns
,
Tido Semmler
,
Simona Ştefănescu
,
Shuting Yang
,
Xueli Wang
,
Klaus Wyser
,
Emanuel Dutra
,
José M. Baldasano
,
Richard Bintanja
,
Philippe Bougeault
,
Rodrigo Caballero
,
Annica M. L. Ekman
,
Jens H. Christensen
,
Bart van den Hurk
,
Pedro Jimenez
,
Colin Jones
,
Per Kållberg
,
Torben Koenigk
,
Ray McGrath
,
Pedro Miranda
,
Twan van Noije
,
Tim Palmer
,
José A. Parodi
,
Torben Schmith
,
Frank Selten
,
Trude Storelvmo
,
Andreas Sterl
,
Honoré Tapamo
,
Martin Vancoppenolle
,
Pedro Viterbo
, and
Ulrika Willén
Full access
Leon Hermanson
,
Doug Smith
,
Melissa Seabrook
,
Roberto Bilbao
,
Francisco Doblas-Reyes
,
Etienne Tourigny
,
Vladimir Lapin
,
Viatcheslav V. Kharin
,
William J. Merryfield
,
Reinel Sospedra-Alfonso
,
Panos Athanasiadis
,
Dario Nicoli
,
Silvio Gualdi
,
Nick Dunstone
,
Rosie Eade
,
Adam Scaife
,
Mark Collier
,
Terence O’Kane
,
Vassili Kitsios
,
Paul Sandery
,
Klaus Pankatz
,
Barbara Früh
,
Holger Pohlmann
,
Wolfgang Müller
,
Takahito Kataoka
,
Hiroaki Tatebe
,
Masayoshi Ishii
,
Yukiko Imada
,
Tim Kruschke
,
Torben Koenigk
,
Mehdi Pasha Karami
,
Shuting Yang
,
Tian Tian
,
Liping Zhang
,
Tom Delworth
,
Xiaosong Yang
,
Fanrong Zeng
,
Yiguo Wang
,
François Counillon
,
Noel Keenlyside
,
Ingo Bethke
,
Judith Lean
,
Jürg Luterbacher
,
Rupa Kumar Kolli
, and
Arun Kumar

Abstract

As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future.

Full access