Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Simone Lolli x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.07–0.67 W m−2 in sample-relative terms, which reduces to 0.03–0.27 W m−2 in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud undersampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth ≤ 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive/negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.
Abstract
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.07–0.67 W m−2 in sample-relative terms, which reduces to 0.03–0.27 W m−2 in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud undersampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth ≤ 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive/negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.
Abstract
The uncertainties in absolute daytime top-of-the-atmosphere (TOA) net cirrus cloud radiative forcing (CRF) and radiative heating rates are estimated at five Micro-Pulse Lidar Network (MPLNET) sites spanning the tropics to high-latitudes. One year of semi-transparent cirrus cloud (optical depth < 3.0 and cloud top temperature < −37 °C) measurements are subject to spectrally-consistent optical properties for nine different ice crystal habits, thus providing a range of possible forcing values. The annual average absolute daytime TOA net CRF is positive at Barbados, Kanpur, and, Singapore (0.59–0.67, 0.61–0.65, and 1.94–2.09 W∙m−2, respectively), negative at Fairbanks (−0.67 to −0.28 W∙m−2), and can regularly become positive or negative at Goddard Space Flight Center (GSFC) (−0.06 to 0.32 W∙m−2). The TOA CRF depends on ice crystal shape; in particular, plates lead to relatively large absolute values that decreases for bullet rosettes and columns. Uncertainties in daytime cirrus cloud radiative properties are estimated as the standard deviation of all possible outcomes when considering the different particle habits individually. Annually, the average uncertainty of the absolute daytime TOA net CRF ranges from 0.50–1.80 W∙m−2. In-cloud daytime net radiative heating rates are positive, on average, at all five sites (0.25–3.84 K/day) and have an estimated uncertainty of less than 0.30 K/day. The uncertainties in cirrus radiative forcing and heating that are characterized by assumptions regarding the ice crystal optical properties must be considered in downstream applications, including satellite retrievals and numerical weather prediction.
Abstract
The uncertainties in absolute daytime top-of-the-atmosphere (TOA) net cirrus cloud radiative forcing (CRF) and radiative heating rates are estimated at five Micro-Pulse Lidar Network (MPLNET) sites spanning the tropics to high-latitudes. One year of semi-transparent cirrus cloud (optical depth < 3.0 and cloud top temperature < −37 °C) measurements are subject to spectrally-consistent optical properties for nine different ice crystal habits, thus providing a range of possible forcing values. The annual average absolute daytime TOA net CRF is positive at Barbados, Kanpur, and, Singapore (0.59–0.67, 0.61–0.65, and 1.94–2.09 W∙m−2, respectively), negative at Fairbanks (−0.67 to −0.28 W∙m−2), and can regularly become positive or negative at Goddard Space Flight Center (GSFC) (−0.06 to 0.32 W∙m−2). The TOA CRF depends on ice crystal shape; in particular, plates lead to relatively large absolute values that decreases for bullet rosettes and columns. Uncertainties in daytime cirrus cloud radiative properties are estimated as the standard deviation of all possible outcomes when considering the different particle habits individually. Annually, the average uncertainty of the absolute daytime TOA net CRF ranges from 0.50–1.80 W∙m−2. In-cloud daytime net radiative heating rates are positive, on average, at all five sites (0.25–3.84 K/day) and have an estimated uncertainty of less than 0.30 K/day. The uncertainties in cirrus radiative forcing and heating that are characterized by assumptions regarding the ice crystal optical properties must be considered in downstream applications, including satellite retrievals and numerical weather prediction.
Abstract
Daytime top-of-the-atmosphere (TOA) cirrus cloud radiative forcing (CRF) is estimated for cirrus clouds observed in ground-based lidar observations at Singapore in 2010 and 2011. Estimates are derived both over land and water to simulate conditions over the broader Maritime Continent archipelago of Southeast Asia. Based on bookend constraints of the lidar extinction-to-backscatter ratio (20 and 30 sr), used to solve extinction and initialize corresponding radiative transfer model simulations, relative daytime TOA CRF is estimated at 2.858–3.370 W m−2 in 2010 (both 20 and 30 sr, respectively) and 3.078–3.329 W m−2 in 2011 and over water between −0.094 and 0.541 W m−2 in 2010 and −0.598 and 0.433 W m−2 in 2011 (both 30 and 20 sr, respectively). After normalizing these estimates for an approximately 80% local satellite-estimated cirrus cloud occurrence rate, they reduce in absolute daytime terms to 2.198–2.592 W m−2 in 2010 and 2.368–2.561 W m−2 in 2011 over land and −0.072–0.416 W m−2 in 2010 and −0.460–0.333 W m−2 in 2011 over water. These annual estimates are mostly consistent despite a tendency toward lower relative cloud-top heights in 2011. Uncertainties are described. Estimates support the open hypothesis of a meridional hemispheric gradient in cirrus cloud daytime TOA CRF globally, varying from positive near the equator to presumably negative approaching the non-ice-covered poles. They help expand upon the paradigm, however, by conceptualizing differences zonally between overland and overwater forcing that differ significantly. More global oceans are likely subject to negative daytime TOA CRF than previously implied.
Abstract
Daytime top-of-the-atmosphere (TOA) cirrus cloud radiative forcing (CRF) is estimated for cirrus clouds observed in ground-based lidar observations at Singapore in 2010 and 2011. Estimates are derived both over land and water to simulate conditions over the broader Maritime Continent archipelago of Southeast Asia. Based on bookend constraints of the lidar extinction-to-backscatter ratio (20 and 30 sr), used to solve extinction and initialize corresponding radiative transfer model simulations, relative daytime TOA CRF is estimated at 2.858–3.370 W m−2 in 2010 (both 20 and 30 sr, respectively) and 3.078–3.329 W m−2 in 2011 and over water between −0.094 and 0.541 W m−2 in 2010 and −0.598 and 0.433 W m−2 in 2011 (both 30 and 20 sr, respectively). After normalizing these estimates for an approximately 80% local satellite-estimated cirrus cloud occurrence rate, they reduce in absolute daytime terms to 2.198–2.592 W m−2 in 2010 and 2.368–2.561 W m−2 in 2011 over land and −0.072–0.416 W m−2 in 2010 and −0.460–0.333 W m−2 in 2011 over water. These annual estimates are mostly consistent despite a tendency toward lower relative cloud-top heights in 2011. Uncertainties are described. Estimates support the open hypothesis of a meridional hemispheric gradient in cirrus cloud daytime TOA CRF globally, varying from positive near the equator to presumably negative approaching the non-ice-covered poles. They help expand upon the paradigm, however, by conceptualizing differences zonally between overland and overwater forcing that differ significantly. More global oceans are likely subject to negative daytime TOA CRF than previously implied.
Abstract
Cirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.
Abstract
Cirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.
ABSTRACT
This work describes some of the most extensive ground-based observations of the aerosol profile collected in Southeast Asia to date, highlighting the challenges in simulating these observations with a mesoscale perspective. An 84-h WRF Model coupled with chemistry (WRF-Chem) mesoscale simulation of smoke particle transport at Kuching, Malaysia, in the southern Maritime Continent of Southeast Asia is evaluated relative to a unique collection of continuous ground-based lidar, sun photometer, and 4-h radiosonde profiling. The period was marked by relatively dry conditions, allowing smoke layers transported to the site unperturbed by wet deposition to be common regionally. The model depiction is reasonable overall. Core thermodynamics, including land/sea-breeze structure, are well resolved. Total model smoke extinction and, by proxy, mass concentration are low relative to observation. Smoke emissions source products are likely low because of undersampling of fires in infrared sun-synchronous satellite products, which is exacerbated regionally by endemic low-level cloud cover. Differences are identified between the model mass profile and the lidar profile, particularly during periods of afternoon convective mixing. A static smoke mass injection height parameterized for this study potentially influences this result. The model does not resolve the convective mixing of aerosol particles into the lower free troposphere or the enhancement of near-surface extinction from nighttime cooling and hygroscopic effects.
ABSTRACT
This work describes some of the most extensive ground-based observations of the aerosol profile collected in Southeast Asia to date, highlighting the challenges in simulating these observations with a mesoscale perspective. An 84-h WRF Model coupled with chemistry (WRF-Chem) mesoscale simulation of smoke particle transport at Kuching, Malaysia, in the southern Maritime Continent of Southeast Asia is evaluated relative to a unique collection of continuous ground-based lidar, sun photometer, and 4-h radiosonde profiling. The period was marked by relatively dry conditions, allowing smoke layers transported to the site unperturbed by wet deposition to be common regionally. The model depiction is reasonable overall. Core thermodynamics, including land/sea-breeze structure, are well resolved. Total model smoke extinction and, by proxy, mass concentration are low relative to observation. Smoke emissions source products are likely low because of undersampling of fires in infrared sun-synchronous satellite products, which is exacerbated regionally by endemic low-level cloud cover. Differences are identified between the model mass profile and the lidar profile, particularly during periods of afternoon convective mixing. A static smoke mass injection height parameterized for this study potentially influences this result. The model does not resolve the convective mixing of aerosol particles into the lower free troposphere or the enhancement of near-surface extinction from nighttime cooling and hygroscopic effects.