Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Stephan Rahm x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Andreas Schäfler
,
Ben Harvey
,
John Methven
,
James D. Doyle
,
Stephan Rahm
,
Oliver Reitebuch
,
Fabian Weiler
, and
Benjamin Witschas

Abstract

Observations across the North Atlantic jet stream with high vertical resolution are used to explore the structure of the jet stream, including the sharpness of vertical wind shear changes across the tropopause and the wind speed. Data were obtained during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) by an airborne Doppler wind lidar, dropsondes, and a ground-based stratosphere–troposphere radar. During the campaign, small wind speed biases throughout the troposphere and lower stratosphere of only −0.41 and −0.15 m s−1 are found, respectively, in the ECMWF and Met Office analyses and short-term forecasts. However, this study finds large and spatially coherent wind errors up to ±10 m s−1 for individual cases, with the strongest errors occurring above the tropopause in upper-level ridges. ECMWF and Met Office analyses indicate similar spatial structures in wind errors, even though their forecast models and data assimilation schemes differ greatly. The assimilation of operational observational data brings the analyses closer to the independent verifying observations, but it cannot fully compensate for the forecast error. Models tend to underestimate the peak jet stream wind, the vertical wind shear (by a factor of 2–5), and the abruptness of the change in wind shear across the tropopause, which is a major contribution to the meridional potential vorticity gradient. The differences are large enough to influence forecasts of Rossby wave disturbances to the jet stream with an anticipated effect on weather forecast skill even on large scales.

Free access