Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Stephen Po-Chedley x
  • Refine by Access: All Content x
Clear All Modify Search
Stephen Po-Chedley
and
Qiang Fu

Abstract

The University of Alabama at Huntsville (UAH), Remote Sensing Systems (RSS), and the National Oceanic and Atmospheric Administration (NOAA) have constructed long-term temperature records for deep atmospheric layers using satellite Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU) observations. However, these groups disagree on the magnitude of global temperature trends since 1979, including the trend for the midtropospheric layer (TMT). This study evaluates the selection of the MSU TMT warm target factor for the NOAA-9 satellite using five homogenized radiosonde products as references. The analysis reveals that the UAH TMT product has a positive bias of 0.051 ± 0.031 in the warm target factor that artificially reduces the global TMT trend by 0.042 K decade−1 for 1979–2009. Accounting for this bias increases the global UAH TMT trend from 0.038 to 0.080 K decade−1, effectively eliminating the trend difference between UAH and RSS and decreasing the trend difference between UAH and NOAA by 47%. This warm target factor bias directly affects the UAH lower tropospheric (TLT) product and tropospheric temperature trends derived from a combination of TMT and lower stratospheric (TLS) channels.

Full access
Stephen Po-Chedley
,
Tyler J. Thorsen
, and
Qiang Fu

Abstract

Independent research teams have constructed long-term tropical time series of the temperature of the middle troposphere (TMT) using satellite Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) measurements. Despite careful efforts to homogenize the MSU/AMSU measurements, tropical TMT trends beginning in 1979 disagree by more than a factor of 3. Previous studies suggest that the discrepancy in tropical TMT trends is caused by differences in both the NOAA-9 warm target factor and diurnal drift corrections. This work introduces a new observationally based method for removing biases related to satellite diurnal drift. Over land, the derived diurnal correction is similar to a general circulation model (GCM) diurnal cycle. Over ocean, the diurnal corrections have a negligible effect on TMT trends, indicating that oceanic biases are small. It is demonstrated that this method is effective at removing biases between coorbiting satellites and biases between nodes of individual satellites. Using a homogenized TMT dataset, the ratio of tropical tropospheric temperature trends relative to surface temperature trends is in accord with the ratio from GCMs. It is shown that bias corrections for diurnal drift based on a GCM produce tropical trends very similar to those from the observationally based correction, with a trend difference smaller than 0.02 K decade−1. Differences between various TMT datasets are explored further. Large differences in tropical TMT trends between this work and that of the University of Alabama in Huntsville (UAH) are attributed to differences in the treatment of the NOAA-9 target factor and the diurnal cycle correction.

Full access
Stephen Po-Chedley
,
Kyle C. Armour
,
Cecilia M. Bitz
,
Mark D. Zelinka
,
Benjamin D. Santer
, and
Qiang Fu

Abstract

Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterized using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. As a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.

Open access
Benjamin D. Santer
,
Susan Solomon
,
Giuliana Pallotta
,
Carl Mears
,
Stephen Po-Chedley
,
Qiang Fu
,
Frank Wentz
,
Cheng-Zhi Zou
,
Jeffrey Painter
,
Ivana Cvijanovic
, and
Céline Bonfils

Abstract

Updated and improved satellite retrievals of the temperature of the mid-to-upper troposphere (TMT) are used to address key questions about the size and significance of TMT trends, agreement with model-derived TMT values, and whether models and satellite data show similar vertical profiles of warming. A recent study claimed that TMT trends over 1979 and 2015 are 3 times larger in climate models than in satellite data but did not correct for the contribution TMT trends receive from stratospheric cooling. Here, it is shown that the average ratio of modeled and observed TMT trends is sensitive to both satellite data uncertainties and model–data differences in stratospheric cooling. When the impact of lower-stratospheric cooling on TMT is accounted for, and when the most recent versions of satellite datasets are used, the previously claimed ratio of three between simulated and observed near-global TMT trends is reduced to approximately 1.7. Next, the validity of the statement that satellite data show no significant tropospheric warming over the last 18 years is assessed. This claim is not supported by the current analysis: in five out of six corrected satellite TMT records, significant global-scale tropospheric warming has occurred within the last 18 years. Finally, long-standing concerns are examined regarding discrepancies in modeled and observed vertical profiles of warming in the tropical atmosphere. It is shown that amplification of tropical warming between the lower and mid-to-upper troposphere is now in close agreement in the average of 37 climate models and in one updated satellite record.

Full access
Benjamin D. Santer
,
Stephen Po-Chedley
,
Carl Mears
,
John C. Fyfe
,
Nathan Gillett
,
Qiang Fu
,
Jeffrey F. Painter
,
Susan Solomon
,
Andrea K. Steiner
,
Frank J. Wentz
,
Mark D. Zelinka
, and
Cheng-Zhi Zou

Abstract

We compare atmospheric temperature changes in satellite data and in model ensembles performed under phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). In the lower stratosphere, multidecadal stratospheric cooling during the period of strong ozone depletion is smaller in newer CMIP6 simulations than in CMIP5 or satellite data. In the troposphere, however, despite forcing and climate sensitivity differences between the two CMIP ensembles, their ensemble-average global warming over 1979–2019 is very similar. We also examine four properties of tropical behavior governed by basic physical processes. The first three are ratios between trends in water vapor (WV) and trends in sea surface temperature (SST), lower-tropospheric temperature (TLT), and mid- to upper-tropospheric temperature (TMT). The fourth property is the ratio between TMT and SST trends. All four ratios are tightly constrained in CMIP simulations but diverge markedly in observations. Model trend ratios between WV and temperature are closest to observed ratios when the latter are calculated with datasets exhibiting larger tropical warming of the ocean surface and troposphere. For the TMT/SST ratio, model–data consistency depends on the combination of observations used to estimate TMT and SST trends. If model expectations of these four covariance relationships are realistic, our findings reflect either a systematic low bias in satellite tropospheric temperature trends or an overestimate of the observed atmospheric moistening signal. It is currently difficult to determine which interpretation is more credible. Nevertheless, our analysis reveals anomalous covariance behavior in several observational datasets and illustrates the diagnostic power of simultaneously considering multiple complementary variables.

Open access
Benjamin D. Santer
,
Stephen Po-Chedley
,
Nicole Feldl
,
John C. Fyfe
,
Qiang Fu
,
Susan Solomon
,
Mark England
,
Keith B. Rodgers
,
Malte F. Stuecker
,
Carl Mears
,
Cheng-Zhi Zou
,
Céline J. W. Bonfils
,
Giuliana Pallotta
,
Mark D. Zelinka
,
Nan Rosenbloom
, and
Jim Edwards

Abstract

Previous work identified an anthropogenic fingerprint pattern in T AC(x, t), the amplitude of the seasonal cycle of mid- to upper-tropospheric temperature (TMT), but did not explicitly consider whether fingerprint identification in satellite T AC(x, t) data could have been influenced by real-world multidecadal internal variability (MIV). We address this question here using large ensembles (LEs) performed with five climate models. LEs provide many different sequences of internal variability noise superimposed on an underlying forced signal. Despite differences in historical external forcings, climate sensitivity, and MIV properties of the five models, their T AC(x, t) fingerprints are similar and statistically identifiable in 239 of the 240 LE realizations of historical climate change. Comparing simulated and observed variability spectra reveals that consistent fingerprint identification is unlikely to be biased by model underestimates of observed MIV. Even in the presence of large (factor of 3–4) intermodel and inter-realization differences in the amplitude of MIV, the anthropogenic fingerprints of seasonal cycle changes are robustly identifiable in models and satellite data. This is primarily due to the fact that the distinctive, global-scale fingerprint patterns are spatially dissimilar to the smaller-scale patterns of internal T AC(x, t) variability associated with the Atlantic multidecadal oscillation and El Niño–Southern Oscillation. The robustness of the seasonal cycle detection and attribution results shown here, taken together with the evidence from idealized aquaplanet simulations, suggest that basic physical processes are dictating a common pattern of forced T AC(x, t) changes in observations and in the five LEs. The key processes involved include GHG-induced expansion of the tropics, lapse-rate changes, land surface drying, and sea ice decrease.

Free access