Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Stephen S. Weygandt x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Haidao Lin, Stephen S. Weygandt, Stanley G. Benjamin, and Ming Hu

Abstract

Assimilation of satellite radiance data in limited-area, rapidly updating weather model/assimilation systems poses unique challenges compared to those for global model systems. Principal among these is the severe data restriction posed by the short data cutoff time. Also, the limited extent of the model domain reduces the spatial extent of satellite data coverage and the lower model top of regional models reduces the spectral usage of radiance data especially for infrared data. These three factors impact the quality of the feedback to the bias correction procedures, making the procedures potentially less effective. Within the National Oceanic and Atmospheric Administration (NOAA) Rapid Refresh (RAP) hourly updating prediction system, satellite radiance data are assimilated using the standard procedures within the Gridpoint Statistical Interpolation (GSI) analysis package. Experiments for optimizing the operational implementation of radiance data into RAP and for improving benefits of radiance data have been performed. The radiance data impact for short-range forecasts has been documented to be consistent and statistically significantly positive in systematic RAP retrospective runs using real-time datasets. The radiance data impact has also been compared with conventional observation datasets within RAP. The configuration for RAP satellite radiance assimilation evaluated here is that implemented at the National Centers for Environmental Prediction (NCEP) in August 2016.

Full access
Haidao Lin, Stephen S. Weygandt, Agnes H. N. Lim, Ming Hu, John M. Brown, and Stanley G. Benjamin

Abstract

This study describes the initial application of radiance bias correction and channel selection in the hourly updated Rapid Refresh model. For this initial application, data from the Atmospheric Infrared Sounder (AIRS) are used; this dataset gives atmospheric temperature and water vapor information at higher vertical resolution and accuracy than previously launched low-spectral resolution satellite systems. In this preliminary study, data from AIRS are shown to add skill to short-range weather forecasts over a relatively data-rich area. Two 1-month retrospective runs were conducted to evaluate the impact of assimilating clear-sky AIRS radiance data on 1–12-h forecasts using a research version of the National Oceanic and Atmospheric Administration (NOAA) Rapid Refresh (RAP) regional mesoscale model already assimilating conventional and other radiance [AMSU-A, Microwave Humidity Sounder (MHS), HIRS-4] data. Prior to performing the assimilation, a channel selection and bias-correction spinup procedure was conducted that was appropriate for the RAP configuration. RAP forecasts initialized from analyses with and without AIRS data were verified against radiosonde, surface atmosphere, precipitation, and satellite radiance observations. Results show that the impact from AIRS radiance data on short-range forecast skill in the RAP system is small but positive and statistically significant at the 95% confidence level. The RAP-specific channel selection and bias correction procedures described in this study were the basis for similar applications to other radiance datasets now assimilated in version 3 of RAP implemented at NOAA’s National Centers for Environmental Prediction (NCEP) in August 2016.

Full access
Stephen S. Weygandt, Stanley G. Benjamin, Ming Hu, Curtis R. Alexander, Tatiana G. Smirnova, and Eric P. James

Abstract

A technique for model initialization using three-dimensional radar reflectivity data has been developed and applied within the NOAA 13-km Rapid Refresh (RAP) and 3-km High-Resolution Rapid Refresh (HRRR) regional forecast systems. This technique enabled the first assimilation of radar reflectivity data for operational NOAA forecast models, critical especially for more accurate short-range prediction of convective storms. For the RAP, the technique uses a diabatic digital filter initialization (DFI) procedure originally deployed to control initial inertial gravity wave noise. Within the forward-model integration portion of diabatic DFI, temperature tendencies obtained from the model cloud/precipitation processes are replaced by specified latent heating–based temperature tendencies derived from the three-dimensional radar reflectivity data, where available. To further refine initial conditions for the convection-allowing HRRR model, a similar procedure is used in the HRRR, but without DFI. Both of these procedures, together called the “Radar-LHI” (latent heating initialization) technique, have been essential for initialization of ongoing precipitation systems, especially convective systems, within all NOAA operational versions of the 13-km RAP and 3-km HRRR models extending through the latest implementation upgrade at NCEP in 2020. Application of the latent heat–derived temperature tendency induces a vertical circulation with low-level convergence and upper-level divergence in precipitation systems. Retrospective tests of the Radar-LHI technique show significant improvement in short-range (0–6 h) precipitation system forecasts, as revealed by reflectivity verification scores. Results presented document the impact on HRRR reflectivity forecasts of the radar reflectivity initialization technique applied to the RAP alone, HRRR alone, and both the RAP and HRRR.

Significance Statement

The large forecast uncertainty of convective situations, even at short lead times, coupled with the hazardous weather they produce, makes convective storm prediction one of the most significant short-range forecast challenges confronting the operational numerical weather prediction community. Prediction of heavy precipitation events also requires accurate initialization of precipitation systems. An innovative assimilation technique using radar reflectivity data to initialize NOAA operational weather prediction models is described. This technique, which uses latent heating specified from radar reflectivity (and can accommodate lightning data and other convection/precipitation indicators), was first implemented in 2009 at NOAA/NCEP and continues to be used in 2022 in the NCEP-operational RAP and HRRR models, making it a backbone of the NOAA rapidly updated numerical weather prediction capability.

Open access
Eric P. James, Curtis R. Alexander, David C. Dowell, Stephen S. Weygandt, Stanley G. Benjamin, Geoffrey S. Manikin, John M. Brown, Joseph B. Olson, Ming Hu, Tatiana G. Smirnova, Terra Ladwig, Jaymes S. Kenyon, and David D. Turner

Abstract

The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Research version of the Weather Research and Forecast (WRF-ARW) Model that covers the conterminous United States and Alaska and runs hourly (for CONUS; every 3 h for Alaska) in real time at the National Centers for Environmental Prediction. The high-resolution forecasts support a variety of user applications including aviation, renewable energy, and prediction of many forms of severe weather. In this second of two articles, forecast performance is documented for a wide variety of forecast variables and across HRRR versions. HRRR performance varies across geographical domain, season, and time of day depending on both prevalence of particular meteorological phenomena and the availability of both conventional and nonconventional observations. Station-based verification of surface weather forecasts (2-m temperature and dewpoint temperature, 10-m winds, visibility, and cloud ceiling) highlights the ability of the HRRR to represent daily planetary boundary layer evolution and the development of convective and stratiform cloud systems, while gridded verification of simulated composite radar reflectivity and quantitative precipitation forecasts reveals HRRR predictive skill for summer and winter precipitation systems. Significant improvements in performance for specific forecast problems are documented for the upgrade versions of the HRRR (HRRRv2, v3, and v4) implemented in 2016, 2018, and 2020, respectively. Development of the HRRR model data assimilation and physics paves the way for future progress with operational convective-scale modeling.

Significance Statement

NOAA’s operational hourly updating convection-allowing model, the High-Resolution Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in assimilation of weather observations, as well as in physics parameterizations, has led to improvements in simulated radar reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014. Other targeted development has focused on improved representation of the diurnal cycle of the planetary boundary layer, resulting in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation changes have led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale clouds. The final version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire smoke plumes.

Open access
David C. Dowell, Curtis R. Alexander, Eric P. James, Stephen S. Weygandt, Stanley G. Benjamin, Geoffrey S. Manikin, Benjamin T. Blake, John M. Brown, Joseph B. Olson, Ming Hu, Tatiana G. Smirnova, Terra Ladwig, Jaymes S. Kenyon, Ravan Ahmadov, David D. Turner, Jeffrey D. Duda, and Trevor I. Alcott

Abstract

The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model with hourly data assimilation that covers the conterminous United States and Alaska and runs in real time at the NOAA/National Centers for Environmental Prediction (NCEP). Implemented operationally at NOAA/NCEP in 2014, the HRRR features 3-km horizontal grid spacing and frequent forecasts (hourly for CONUS and 3-hourly for Alaska). HRRR initialization is designed for optimal short-range forecast skill with a particular focus on the evolution of precipitating systems. Key components of the initialization are radar-reflectivity data assimilation, hybrid ensemble-variational assimilation of conventional weather observations, and a cloud analysis to initialize stratiform cloud layers. From this initial state, HRRR forecasts are produced out to 18 h every hour, and out to 48 h every 6 h, with boundary conditions provided by the Rapid Refresh system. Between 2014 and 2020, HRRR development was focused on reducing model bias errors and improving forecast realism and accuracy. Improved representation of the planetary boundary layer, subgrid-scale clouds, and land surface contributed extensively to overall HRRR improvements. The final version of the HRRR (HRRRv4), implemented in late 2020, also features hybrid data assimilation using flow-dependent covariances from a 3-km, 36-member ensemble (“HRRRDAS”) with explicit convective storms. HRRRv4 also includes prediction of wildfire smoke plumes. The HRRR provides a baseline capability for evaluating NOAA’s next-generation Rapid Refresh Forecast System, now under development.

Significance Statement

NOAA’s operational hourly updating, convection-allowing model, the High-Resolution Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in assimilation of weather observations, as well as in physics parameterizations, have led to improvements in simulated radar reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014. Other targeted development has focused on improved representation of the diurnal cycle of the planetary boundary layer, resulting in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation changes have led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale clouds. The final version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire smoke plumes.

Open access