Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Steven J. Woolnough x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Simon C. Peatman, John Methven, and Steven J. Woolnough

Abstract

The rate of humidity entrainment in the convective parameterization scheme in a general circulation model affects the simulation of convectively coupled waves. However, it is unclear whether this is caused directly by the effects of entrainment on waves or indirectly through associated impacts such as on the basic state. Therefore, using an aquaplanet model, we employ a novel framework in which we entrain a weighted average of the resolved humidity field and a prescribed zonally symmetric field, with the weighting controlled by a decoupling parameter. Hence, we can vary the entrainment rate of basic-state humidity independently of the entrainment of humidity perturbations, simultaneously minimizing changes in the basic state. Thus, we isolate the effect of moisture entrainment on the waves. Enhancing the entrainment rate increases spectral power over all zonal wavenumbers and frequencies, with an increase in the ratio of eastward-to-westward power. The Kelvin wave speed decreases as entrainment increases, which can be partially accounted for by an associated change in basic-state humidity. Increasing the decoupling parameter reduces spectral power in Kelvin waves relative to the background, with only long waves still prominent when entrainment is almost fully decoupled from the resolved moisture field, suggesting the wave structure in humidity is required for convection to organize into short-wave structures. For long waves, the increase in the ratio of eastward-to-westward power as entrainment rate increases cannot be explained by the changes in the coupling with the wave structure in humidity but is consistent with the changes in the basic state.

Full access
Christopher E. Holloway, Steven J. Woolnough, and Grenville M. S. Lister

Abstract

High-resolution simulations over a large tropical domain (~20°S–20°N, 42°E–180°) using both explicit and parameterized convection are analyzed and compared to observations during a 10-day case study of an active Madden–Julian oscillation (MJO) event. The parameterized convection model simulations at both 40- and 12-km grid spacing have a very weak MJO signal and little eastward propagation. A 4-km explicit convection simulation using Smagorinsky subgrid mixing in the vertical and horizontal dimensions exhibits the best MJO strength and propagation speed. Explicit convection simulations at 12 km also perform much better than the 12-km parameterized convection run, suggesting that the convection scheme, rather than horizontal resolution, is key for these MJO simulations. Interestingly, a 4-km explicit convection simulation using the conventional boundary layer scheme for vertical subgrid mixing (but still using Smagorinsky horizontal mixing) completely loses the large-scale MJO organization, showing that relatively high resolution with explicit convection does not guarantee a good MJO simulation. Models with a good MJO representation have a more realistic relationship between lower-free-tropospheric moisture and precipitation, supporting the idea that the moisture–convection feedback is a key process for MJO propagation. There is also increased generation of available potential energy and conversion of that energy into kinetic energy in models with a more realistic MJO, which is related to larger zonal variance in convective heating and vertical velocity, larger zonal temperature variance around 200 hPa, and larger correlations between temperature and ascent (and between temperature and diabatic heating) between 500 and 400 hPa.

Full access
Christopher E. Holloway, Steven J. Woolnough, and Grenville M. S. Lister

Abstract

High-resolution simulations over a large tropical domain (~20°S–20°N, 42°E–180°) using both explicit and parameterized convection are analyzed and compared during a 10-day case study of an active Madden–Julian oscillation (MJO) event. In this paper, Part II of this study, the moisture budgets and moist entropy budgets are analyzed. Vertical subgrid diabatic heating profiles and vertical velocity profiles are also compared; these are related to the horizontal and vertical advective components of the moist entropy budget, which contribute to gross moist stability (GMS) and normalized GMS (NGMS). The 4-km model with explicit convection and good MJO performance has a vertical heating structure that increases with height in the lower troposphere in regions of strong convection (like observations), whereas the 12-km model with parameterized convection and a poor MJO does not show this relationship. The 4-km explicit convection model also has a more top-heavy heating profile for the troposphere as a whole near and to the west of the active MJO-related convection, unlike the 12-km parameterized convection model. The dependence of entropy advection components on moisture convergence is fairly weak in all models, and differences between models are not always related to MJO performance, making comparisons to previous work somewhat inconclusive. However, models with relatively good MJO strength and propagation have a slightly larger increase of the vertical advective component with increasing moisture convergence, and their NGMS vertical terms have more variability in time and longitude, with total NGMS that is comparatively larger to the west and smaller to the east.

Full access
Jan A. Kamieniecki, Maarten H. P. Ambaum, Robert S. Plant, and Steven J. Woolnough

Abstract

A thermodynamic analysis is presented of an overturning circulation simulated by two cloud-resolving models, coupled by a weak temperature gradient parameterization. Taken together, they represent two separated regions over different sea surface temperatures, and the coupling represents an idealized large-scale circulation such as the Walker circulation. It is demonstrated that a thermodynamic budget linking net heat input to the generation of mechanical energy can be partitioned into contributions from the large-scale interaction between the two regions, as represented by the weak temperature gradient approximation, and from convective motions in the active warm region and the suppressed cool region. Model results imply that such thermodynamic diagnostics for the aggregate system are barely affected by the strength of the coupling, even its introduction, or by the SST contrast between the regions. This indicates that the weak temperature gradient parameterization does not introduce anomalous thermodynamic behavior. We find that the vertical kinetic energy associated with the large-scale circulation is more than three orders of magnitude smaller than the typical vertical kinetic energy in each region. However, even with very weak coupling circulations, the contrast between the thermodynamic budget terms for the suppressed and active regions is strong and is relatively insensitive to the degree of the coupling. Additionally, scaling arguments are developed for the relative values of the terms in the mechanical energy budget.

Full access
Jian-Feng Gu, Robert Stephen Plant, Christopher E. Holloway, Todd R. Jones, Alison Stirling, Peter A. Clark, Steven J. Woolnough, and Thomas L. Webb

Abstract

In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of different cloud objects, and the intraobject variability due to perturbations within each cloud object. Using a simple cloud–environment decomposition, the interobject and intraobject contributions to the heat flux are comparable in magnitude with that from the bulk mass flux approximation, but do not share a similar vertical distribution, and so cannot be parameterized with a rescaling method. A downgradient assumption is also not appropriate to parameterize the neglected flux contributions because a nonnegligible part is associated with nonlocal buoyant structures. A spectral analysis further suggests the presence of fine structures within the clouds. These points motivate investigations in which the vertical transports are decomposed based on the distribution of vertical velocity. As a result, a “core-cloak” conceptual model is proposed to improve the representation of total vertical fluxes, composed of a strong and a weak draft for both the updrafts and downdrafts. It is shown that the core-cloak representation can well capture the magnitude and vertical distribution of heat and moisture fluxes for both shallow and deep convection.

Open access