Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Subhadeep Halder x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.
Abstract
This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.
Abstract
A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.
Abstract
A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.