Search Results
Abstract
The interference between transient eddies and climatological stationary eddies in the Northern Hemisphere is investigated. The amplitude and sign of the interference is represented by the stationary wave index (SWI), which is calculated by projecting the daily 300-hPa streamfunction anomaly field onto the 300-hPa climatological stationary wave. ERA-Interim data for the years 1979 to 2013 are used. The amplitude of the interference peaks during boreal winter. The evolution of outgoing longwave radiation, Arctic temperature, 300-hPa streamfunction, 10-hPa zonal wind, Arctic sea ice concentration, and the Arctic Oscillation (AO) index are examined for days of large SWI values during the winter.
Constructive interference during winter tends to occur about one week after enhanced warm pool convection and is followed by an increase in Arctic surface air temperature along with a reduction of sea ice in the Barents and Kara Seas. The warming of the Arctic does occur without prior warm pool convection, but it is enhanced and prolonged when constructive interference occurs in concert with enhanced warm pool convection. This is followed two weeks later by a weakening of the stratospheric polar vortex and a decline of the AO. All of these associations are reversed in the case of destructive interference. Potential climate change implications are briefly discussed.
Abstract
The interference between transient eddies and climatological stationary eddies in the Northern Hemisphere is investigated. The amplitude and sign of the interference is represented by the stationary wave index (SWI), which is calculated by projecting the daily 300-hPa streamfunction anomaly field onto the 300-hPa climatological stationary wave. ERA-Interim data for the years 1979 to 2013 are used. The amplitude of the interference peaks during boreal winter. The evolution of outgoing longwave radiation, Arctic temperature, 300-hPa streamfunction, 10-hPa zonal wind, Arctic sea ice concentration, and the Arctic Oscillation (AO) index are examined for days of large SWI values during the winter.
Constructive interference during winter tends to occur about one week after enhanced warm pool convection and is followed by an increase in Arctic surface air temperature along with a reduction of sea ice in the Barents and Kara Seas. The warming of the Arctic does occur without prior warm pool convection, but it is enhanced and prolonged when constructive interference occurs in concert with enhanced warm pool convection. This is followed two weeks later by a weakening of the stratospheric polar vortex and a decline of the AO. All of these associations are reversed in the case of destructive interference. Potential climate change implications are briefly discussed.
Abstract
The surface warming in recent decades has been most rapid in the Arctic, especially during the winter. Here, by utilizing global reanalysis and satellite datasets, it is shown that the northward flux of moisture into the Arctic during the winter strengthens the downward infrared radiation (IR) by 30–40 W m−2 over 1–2 weeks. This is followed by a decline of up to 10% in sea ice concentration over the Greenland, Barents, and Kara Seas. A climate model simulation indicates that the wind-induced sea ice drift leads the decline of sea ice thickness during the early stage of the strong downward IR events, but that within one week the cumulative downward IR effect appears to be dominant. Further analysis indicates that strong downward IR events are preceded several days earlier by enhanced convection over the tropical Indian and western Pacific Oceans. This finding suggests that sea ice predictions can benefit from an improved understanding of tropical convection and ensuing planetary wave dynamics.
Abstract
The surface warming in recent decades has been most rapid in the Arctic, especially during the winter. Here, by utilizing global reanalysis and satellite datasets, it is shown that the northward flux of moisture into the Arctic during the winter strengthens the downward infrared radiation (IR) by 30–40 W m−2 over 1–2 weeks. This is followed by a decline of up to 10% in sea ice concentration over the Greenland, Barents, and Kara Seas. A climate model simulation indicates that the wind-induced sea ice drift leads the decline of sea ice thickness during the early stage of the strong downward IR events, but that within one week the cumulative downward IR effect appears to be dominant. Further analysis indicates that strong downward IR events are preceded several days earlier by enhanced convection over the tropical Indian and western Pacific Oceans. This finding suggests that sea ice predictions can benefit from an improved understanding of tropical convection and ensuing planetary wave dynamics.