Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: T. Andrew Black x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Doug Richardson, Amanda S. Black, Didier P. Monselesan, Thomas S. Moore II, James S. Risbey, Andrew Schepen, Dougal T. Squire, and Carly R. Tozer

Abstract

Subseasonal forecast skill is not homogeneous in time, and prior assessment of the likely forecast skill would be valuable for end-users. We propose a method for identifying periods of high forecast confidence using atmospheric circulation patterns, with an application to southern Australia precipitation. In particular, we use archetypal analysis to derive six patterns, called archetypes, of daily 500-hPa geopotential height (Z 500) fields over Australia. We assign Z 500 reanalysis fields to the closest-matching archetype and subsequently link the archetypes to precipitation for three key regions in the Australian agriculture and energy sectors: the Murray Basin, southwest Western Australia, and western Tasmania. Using a 20-yr hindcast dataset from the European Centre for Medium-Range Weather Forecasts subseasonal-to-seasonal prediction system, we identify periods of high confidence as when hindcast Z 500 fields closely match an archetype according to a distance criterion. We compare the precipitation hindcast accuracy during these confident periods compared to normal. Considering all archetypes, we show that there is greater skill during confident periods for lead times of less than 10 days in the Murray Basin and western Tasmania, and for greater than 6 days in southwest Western Australia, although these conclusions are subject to substantial uncertainty. By breaking down the skill results for each archetype individually, we highlight how skill tends to be greater than normal for those archetypes associated with drier-than-average conditions.

Open access
Shusen Wang, Ming Pan, Qiaozhen Mu, Xiaoying Shi, Jiafu Mao, Christian Brümmer, Rachhpal S. Jassal, Praveena Krishnan, Junhua Li, and T. Andrew Black

Abstract

This study compares six evapotranspiration ET products for Canada’s landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of data quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November–February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.

Full access