Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: T. B. Smith x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
William D. Collins
,
Cecilia M. Bitz
,
Maurice L. Blackmon
,
Gordon B. Bonan
,
Christopher S. Bretherton
,
James A. Carton
,
Ping Chang
,
Scott C. Doney
,
James J. Hack
,
Thomas B. Henderson
,
Jeffrey T. Kiehl
,
William G. Large
,
Daniel S. McKenna
,
Benjamin D. Santer
, and
Richard D. Smith

Abstract

The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.

Full access
L. C. Slivinski
,
G. P. Compo
,
P. D. Sardeshmukh
,
J. S. Whitaker
,
C. McColl
,
R. J. Allan
,
P. Brohan
,
X. Yin
,
C. A. Smith
,
L. J. Spencer
,
R. S. Vose
,
M. Rohrer
,
R. P. Conroy
,
D. C. Schuster
,
J. J. Kennedy
,
L. Ashcroft
,
S. Brönnimann
,
M. Brunet
,
D. Camuffo
,
R. Cornes
,
T. A. Cram
,
F. Domínguez-Castro
,
J. E. Freeman
,
J. Gergis
,
E. Hawkins
,
P. D. Jones
,
H. Kubota
,
T. C. Lee
,
A. M. Lorrey
,
J. Luterbacher
,
C. J. Mock
,
R. K. Przybylak
,
C. Pudmenzky
,
V. C. Slonosky
,
B. Tinz
,
B. Trewin
,
X. L. Wang
,
C. Wilkinson
,
K. Wood
, and
P. Wyszyński

Abstract

The performance of a new historical reanalysis, the NOAA–CIRES–DOE Twentieth Century Reanalysis version 3 (20CRv3), is evaluated via comparisons with other reanalyses and independent observations. This dataset provides global, 3-hourly estimates of the atmosphere from 1806 to 2015 by assimilating only surface pressure observations and prescribing sea surface temperature, sea ice concentration, and radiative forcings. Comparisons with independent observations, other reanalyses, and satellite products suggest that 20CRv3 can reliably produce atmospheric estimates on scales ranging from weather events to long-term climatic trends. Not only does 20CRv3 recreate a “best estimate” of the weather, including extreme events, it also provides an estimate of its confidence through the use of an ensemble. Surface pressure statistics suggest that these confidence estimates are reliable. Comparisons with independent upper-air observations in the Northern Hemisphere demonstrate that 20CRv3 has skill throughout the twentieth century. Upper-air fields from 20CRv3 in the late twentieth century and early twenty-first century correlate well with full-input reanalyses, and the correlation is predicted by the confidence fields from 20CRv3. The skill of analyzed 500-hPa geopotential heights from 20CRv3 for 1979–2015 is comparable to that of modern operational 3–4-day forecasts. Finally, 20CRv3 performs well on climate time scales. Long time series and multidecadal averages of mass, circulation, and precipitation fields agree well with modern reanalyses and station- and satellite-based products. 20CRv3 is also able to capture trends in tropospheric-layer temperatures that correlate well with independent products in the twentieth century, placing recent trends in a longer historical context.

Open access