Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: T. J. Jackson x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Alan E. Lipton, George D. Modica, Scot T. Heckman, and Arthur J. Jackson

Abstract

A system for time-continuous mesoscale weather analysis is applied to a study of convective cloud development in central Florida. The analysis system incorporates water vapor concentrations and surface temperatures retrieved from infrared VISSR (Visible–Infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) satellite data, with coupling between the retrieval process and time integration of a mesoscale model. Analyses prepared with variations of this coupled system are compared with a control numerical analysis prepared with only conventional meteorological observations and are validated against surface and upper-air data collected for the Convection and Precipitation/Electrification experiment. The coupled analyses assimilate six sets of VAS data over an 8-h period on 19 July 1991 and depict water vapor gradients at far greater horizontal resolution than is available from conventional observations and with an overall accuracy better than the control analysis. The coupled system's ability to assimilate multiple sets of VAS data, with meteorological continuity provided by the model, was important to the accuracy and the breadth of coverage of the water vapor analysis amid changing cloud cover conditions. The surface temperature information provided by the VAS was neither harmful nor very helpful to the mesoscale analysis for this case, owing to the combination of mediocre satellite viewing conditions and the apparent low importance of land surface temperature gradients to the meteorology of the day. Convective stability parameters computed from the coupled analysis data at 1000 local time corresponded closely with patterns of cloud development in the early afternoon.

Full access