Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Takmeng Wong x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
K. Franklin Evans
,
Joseph Turk
,
Takmeng Wong
, and
Graeme L. Stephens

Abstract

A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. Amultivariate lognormal prior probability distribution contains the covariance information about hydrometeor distributions that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrievalmethod is tested with data from the Advanced Microwave Precipitation Radiometer (IO, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify theretrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysicalinformation, and future improvements to the algorithm are suggested.

Full access
David A. Rutan
,
G. Louis Smith
, and
Takmeng Wong

Abstract

Five years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ERBS data processing by a directional model, and some is due to the diurnal cycle of cloudiness. The second PC describes 2%–4% of the variance for ocean and 5% for land, and it is primarily due to variations of cloudiness throughout the day, which are asymmetric about noon. These terms show the response of the atmosphere to the cycle of solar heating. The third PC for ocean is a two-peaked curve, and the associated map shows high values in cloudy regions.

Full access
G. Louis Smith
,
Pamela E. Mlynczak
,
David A. Rutan
, and
Takmeng Wong

Abstract

The diurnal cycle of outgoing longwave radiation (OLR) computed by a climate model provides a powerful test of the numerical description of various physical processes. Diurnal cycles of OLR computed by version 3 of the Hadley Centre Atmospheric Model (HadAM3) are compared with those observed by the Earth Radiation Budget Satellite (ERBS) for the boreal summer season (June–August). The ERBS observations cover the domain from 55°S to 55°N. To compare the observed and modeled diurnal cycles, the principal component (PC) analysis method is used over this domain. The analysis is performed separately for the land and ocean regions. For land over this domain, the diurnal cycle computed by the model has a root-mean-square (RMS) of 11.4 W m−2, as compared with 13.3 W m−2 for ERBS. PC-1 for ERBS observations and for the model are similar, but the ERBS result has a peak near 1230 LST and decreases very slightly during night, whereas the peak of the model result is an hour later and at night the OLR decreases by 7 W m−2 between 2000 and 0600 LST. Some of the difference between the ERBS and model results is due to the computation of convection too early in the afternoon by the model. PC-2 describes effects of morning/afternoon cloudiness on OLR, depending on the sign. Over ocean in the ERBS domain, the model RMS of the OLR diurnal cycle is 2.8 W m−2, as compared with 5.9 W m−2 for ERBS. Also, for the model, PC-1 accounts for 66% of the variance, while for ERBS, PC-1 accounts for only 16% of the variance. Thus, over ocean, the ERBS results show a greater variety of OLR diurnal cycles than the model does.

Full access