Search Results
You are looking at 1 - 10 of 14 items for :
- Author or Editor: Takmeng Wong x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
Three boundary layer cloud object types—overcast, stratocumulus, and cumulus—that occurred over the Pacific Ocean during January–August 1998 are identified from the Clouds and the Earth’s Radiant Energy System (CERES) single scanner footprint data. Characteristics of each cloud object type matched with atmospheric states are examined for large regions in the tropics and subtropics and for different size categories. Stratocumulus cloud objects dominate the entire boundary layer cloud population in all regions and size categories. Overcast cloud objects, which have the largest average size, are more prevalent in the subtropics and near the coastal regions, while cumulus cloud objects are prevalent over the open oceans and the equatorial regions, particularly within the small-size categories. Cloud objects with equivalent diameters less than 75 km are excluded in the analysis.
The differences between the tropical and subtropical statistical distributions of cloud properties are small for liquid water path (LWP), cloud optical depth, and top-of-the-atmosphere (TOA) albedo, but large for cloud-top temperature and outgoing longwave radiation (OLR), for each of the three cloud object types. The larger cloud objects have higher LWPs, cloud optical depths, TOA albedos, and OLRs, but lower SSTs and cloud-top heights for the stratocumulus and overcast types. Lower-tropospheric stability seems to be the primary factor for the differences in the distributions of cloud physical properties between the regions or between the size categories. Atmospheric dynamics also play a role in determining the differences in the distributions of cloud physical properties between the size categories, but not a significant role for those between the types or between the regions. The latter may be due to uncertainties in the matched vertical velocity data. When the three cloud object types are combined in small regions, lower-tropospheric stability determines the transition of boundary layer cloud types along a Pacific transect. The proportion of each type is the most important factor for diagnosing the combined cloud properties along this transect, such as LWP, cloud optical depth, and TOA albedo. Atmospheric dynamics also play complicated roles in determining the combined cloud properties along this transect.
Abstract
Three boundary layer cloud object types—overcast, stratocumulus, and cumulus—that occurred over the Pacific Ocean during January–August 1998 are identified from the Clouds and the Earth’s Radiant Energy System (CERES) single scanner footprint data. Characteristics of each cloud object type matched with atmospheric states are examined for large regions in the tropics and subtropics and for different size categories. Stratocumulus cloud objects dominate the entire boundary layer cloud population in all regions and size categories. Overcast cloud objects, which have the largest average size, are more prevalent in the subtropics and near the coastal regions, while cumulus cloud objects are prevalent over the open oceans and the equatorial regions, particularly within the small-size categories. Cloud objects with equivalent diameters less than 75 km are excluded in the analysis.
The differences between the tropical and subtropical statistical distributions of cloud properties are small for liquid water path (LWP), cloud optical depth, and top-of-the-atmosphere (TOA) albedo, but large for cloud-top temperature and outgoing longwave radiation (OLR), for each of the three cloud object types. The larger cloud objects have higher LWPs, cloud optical depths, TOA albedos, and OLRs, but lower SSTs and cloud-top heights for the stratocumulus and overcast types. Lower-tropospheric stability seems to be the primary factor for the differences in the distributions of cloud physical properties between the regions or between the size categories. Atmospheric dynamics also play a role in determining the differences in the distributions of cloud physical properties between the size categories, but not a significant role for those between the types or between the regions. The latter may be due to uncertainties in the matched vertical velocity data. When the three cloud object types are combined in small regions, lower-tropospheric stability determines the transition of boundary layer cloud types along a Pacific transect. The proportion of each type is the most important factor for diagnosing the combined cloud properties along this transect, such as LWP, cloud optical depth, and TOA albedo. Atmospheric dynamics also play complicated roles in determining the combined cloud properties along this transect.
Abstract
Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000–February 2005) of Clouds and the Earth’s Radiant Energy System (CERES)–Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (−1.9% to −3.4% K−1) and the logarithm of low-cloud optical depth (−0.085 to −0.100 K−1) tend to decrease while the net cloud radiative effect (3.86 W m−2 K−1) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W m−2 K−1) and small changes in low-cloud amount (−0.81% to 0.22% K−1) and decrease in the logarithm of optical depth (–0.035 to –0.046 K−1) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (∼4 W m−2 K−1) in the southeast and northeast Atlantic regions and a slightly negative feedback (−0.2 W m−2 K−1) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.
Abstract
Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000–February 2005) of Clouds and the Earth’s Radiant Energy System (CERES)–Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (−1.9% to −3.4% K−1) and the logarithm of low-cloud optical depth (−0.085 to −0.100 K−1) tend to decrease while the net cloud radiative effect (3.86 W m−2 K−1) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W m−2 K−1) and small changes in low-cloud amount (−0.81% to 0.22% K−1) and decrease in the logarithm of optical depth (–0.035 to –0.046 K−1) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (∼4 W m−2 K−1) in the southeast and northeast Atlantic regions and a slightly negative feedback (−0.2 W m−2 K−1) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.
Abstract
The Clouds and the Earth’s Radiant Energy System (CERES) is a new National Aeronautics and Space Administration space-borne measurement project for monitoring the radiation environment of the earth–atmosphere system. The first CERES instrument was launched into space on board the Tropical Rainfall Measuring Mission (TRMM) satellite on 27 November 1997. The purpose of this paper is 1) to describe the initial validation of the new CERES/TRMM Earth Radiation Budget Experiment (ERBE)–like monthly mean clear-sky longwave (CLW) dataset and 2) to demonstrate the scientific benefit of this new dataset through a data application study on the 1998 El Niño–Southern Oscillation (ENSO) episode. The initial validation of the CERES CLW data is carried out based on comparisons with both historical ERBE observations and radiative transfer simulations. While the observed CERES CLWs are initially larger than the historical ERBE record during the first part of the 1998 ENSO event, these differences are diminished by the end of the ENSO event in July 1998. These unique ENSO-related CLW radiation signatures are captured well by the radiative transfer model simulations. These results demonstrate that the new CERES CLW fluxes are theoretically consistent with the underlying physics of the atmosphere. A CERES data application study is performed to examine the relationship between the CERES CLW anomaly and changes in sea surface temperature (SST) and atmospheric column precipitable water content (PWC) during the January 1998 ENSO event. While the changes in the SST pattern are basically uncorrelated with changes in the CLW field, a negative correlation is found between the PWC anomaly and the changes in the CLW radiation field. These observed features point to 1) the significant role of the water vapor field in modulating the tropical outgoing CLW radiation field during the 1998 ENSO event and 2) the important effects of water vapor absorption in decoupling the top of the atmosphere tropical outgoing CLW radiation from the surface upward CLW field.
Abstract
The Clouds and the Earth’s Radiant Energy System (CERES) is a new National Aeronautics and Space Administration space-borne measurement project for monitoring the radiation environment of the earth–atmosphere system. The first CERES instrument was launched into space on board the Tropical Rainfall Measuring Mission (TRMM) satellite on 27 November 1997. The purpose of this paper is 1) to describe the initial validation of the new CERES/TRMM Earth Radiation Budget Experiment (ERBE)–like monthly mean clear-sky longwave (CLW) dataset and 2) to demonstrate the scientific benefit of this new dataset through a data application study on the 1998 El Niño–Southern Oscillation (ENSO) episode. The initial validation of the CERES CLW data is carried out based on comparisons with both historical ERBE observations and radiative transfer simulations. While the observed CERES CLWs are initially larger than the historical ERBE record during the first part of the 1998 ENSO event, these differences are diminished by the end of the ENSO event in July 1998. These unique ENSO-related CLW radiation signatures are captured well by the radiative transfer model simulations. These results demonstrate that the new CERES CLW fluxes are theoretically consistent with the underlying physics of the atmosphere. A CERES data application study is performed to examine the relationship between the CERES CLW anomaly and changes in sea surface temperature (SST) and atmospheric column precipitable water content (PWC) during the January 1998 ENSO event. While the changes in the SST pattern are basically uncorrelated with changes in the CLW field, a negative correlation is found between the PWC anomaly and the changes in the CLW radiation field. These observed features point to 1) the significant role of the water vapor field in modulating the tropical outgoing CLW radiation field during the 1998 ENSO event and 2) the important effects of water vapor absorption in decoupling the top of the atmosphere tropical outgoing CLW radiation from the surface upward CLW field.
Abstract
The physical and radiative properties of tropical deep convective systems for the period from January to August 1998 are examined with the use of Clouds and the Earth’s Radiant Energy System Single-Scanner Footprint (SSF) data from the Tropical Rainfall Measuring Mission satellite. Deep convective (DC) cloud objects are contiguous regions of satellite footprints that fulfill the DC criteria (i.e., overcast footprints with cloud optical depths >10 and cloud-top heights >10 km). Extended cloud objects (ECOs) start with the original cloud object but include all other cloudy footprints within a rectangular box that completely covers the original cloud object. Most of the non-DC footprints are overcast but have optical depths and/or cloud-top heights that are too low to fit the DC criteria. The histograms of cloud physical and radiative properties are analyzed according to the size of the ECO and the SST of the underlying ocean.
Larger ECOs are associated with greater magnitudes of large-scale upward motion, which supports stronger convection for larger sizes of ECOs. This leads to shifts toward higher values in the DC distributions of cloud-top height, albedo, condensate water path, and cloud optical depth. However, non-DC footprints become less reflective with increasing ECO size, as the longer-lived large convective systems have more time to develop thin cirrus anvils. The proportion of DC footprints remains fairly constant with size. The proportion of DC footprints also remains nearly constant with SST within a given size class, although the number of footprints per object increases with SST for large objects. As SSTs increase, there is a decrease in the proportion of updraft water that goes into detrainment, causing the non-DC distributions of albedo, condensate water path, and cloud optical depth to shift toward lower values. The all-cloud distributions of cloud-top temperature and outgoing longwave radiation (OLR) shift toward lower values as SST increases owing to the increase in convective instability with SST. Both the DC and non-DC distributions of cloud-top temperature do not change much with satellite precession cycle, supporting the fixed anvil temperature hypothesis of Hartmann and Larson. When a joint histogram is formed from the cloud-top pressures and cloud optical depths of the ECOs, it is very similar to the corresponding histogram of the deep convective weather state obtained by cluster analysis of International Satellite Cloud Climatology Project data.
Abstract
The physical and radiative properties of tropical deep convective systems for the period from January to August 1998 are examined with the use of Clouds and the Earth’s Radiant Energy System Single-Scanner Footprint (SSF) data from the Tropical Rainfall Measuring Mission satellite. Deep convective (DC) cloud objects are contiguous regions of satellite footprints that fulfill the DC criteria (i.e., overcast footprints with cloud optical depths >10 and cloud-top heights >10 km). Extended cloud objects (ECOs) start with the original cloud object but include all other cloudy footprints within a rectangular box that completely covers the original cloud object. Most of the non-DC footprints are overcast but have optical depths and/or cloud-top heights that are too low to fit the DC criteria. The histograms of cloud physical and radiative properties are analyzed according to the size of the ECO and the SST of the underlying ocean.
Larger ECOs are associated with greater magnitudes of large-scale upward motion, which supports stronger convection for larger sizes of ECOs. This leads to shifts toward higher values in the DC distributions of cloud-top height, albedo, condensate water path, and cloud optical depth. However, non-DC footprints become less reflective with increasing ECO size, as the longer-lived large convective systems have more time to develop thin cirrus anvils. The proportion of DC footprints remains fairly constant with size. The proportion of DC footprints also remains nearly constant with SST within a given size class, although the number of footprints per object increases with SST for large objects. As SSTs increase, there is a decrease in the proportion of updraft water that goes into detrainment, causing the non-DC distributions of albedo, condensate water path, and cloud optical depth to shift toward lower values. The all-cloud distributions of cloud-top temperature and outgoing longwave radiation (OLR) shift toward lower values as SST increases owing to the increase in convective instability with SST. Both the DC and non-DC distributions of cloud-top temperature do not change much with satellite precession cycle, supporting the fixed anvil temperature hypothesis of Hartmann and Larson. When a joint histogram is formed from the cloud-top pressures and cloud optical depths of the ECOs, it is very similar to the corresponding histogram of the deep convective weather state obtained by cluster analysis of International Satellite Cloud Climatology Project data.
Abstract
Recent studies of the Earth Radiation Budget Satellite (ERBS) nonscanner radiation data indicate decadal changes in tropical cloudiness and unexpected radiative anomalies between the 1980s and 1990s. In this study, the ERBS decadal observations are compared with the predictions of the Iris hypothesis using 3.5-box model. To further understand the predictions, the tropical radiative properties observed from recent Clouds and the Earth's Radiant Energy System (CERES) radiation budget experiment [the NASA Langley Research Center (LaRC) parameters] are used to replace the modeled values in the Iris hypothesis. The predicted variations of the radiation fields strongly depend on the relationship (−22% K−1) of tropical high cloud and sea surface temperature (SST) assumed by the Iris hypothesis.
On the decadal time scale, the predicted tropical mean radiative flux anomalies are generally significantly different from those of the ERBS measurements, suggesting that the decadal ERBS nonscanner radiative energy budget measurements do not support the strong negative feedback of the Iris effect. Poor agreements between the satellite data and model predictions even when the tropical radiative properties from CERES observations (LaRC parameters) are used imply that besides the Iris-modeled tropical radiative properties, the unrealistic variations of tropical high cloud generated from the detrainment of deep convection with SST assumed by the Iris hypothesis are likely to be another major factor for causing the deviation between the predictions and observations.
Abstract
Recent studies of the Earth Radiation Budget Satellite (ERBS) nonscanner radiation data indicate decadal changes in tropical cloudiness and unexpected radiative anomalies between the 1980s and 1990s. In this study, the ERBS decadal observations are compared with the predictions of the Iris hypothesis using 3.5-box model. To further understand the predictions, the tropical radiative properties observed from recent Clouds and the Earth's Radiant Energy System (CERES) radiation budget experiment [the NASA Langley Research Center (LaRC) parameters] are used to replace the modeled values in the Iris hypothesis. The predicted variations of the radiation fields strongly depend on the relationship (−22% K−1) of tropical high cloud and sea surface temperature (SST) assumed by the Iris hypothesis.
On the decadal time scale, the predicted tropical mean radiative flux anomalies are generally significantly different from those of the ERBS measurements, suggesting that the decadal ERBS nonscanner radiative energy budget measurements do not support the strong negative feedback of the Iris effect. Poor agreements between the satellite data and model predictions even when the tropical radiative properties from CERES observations (LaRC parameters) are used imply that besides the Iris-modeled tropical radiative properties, the unrealistic variations of tropical high cloud generated from the detrainment of deep convection with SST assumed by the Iris hypothesis are likely to be another major factor for causing the deviation between the predictions and observations.
Abstract
Relationships between physical properties are studied for three types of marine boundary layer cloud objects identified with the Clouds and the Earth’s Radiant Energy System (CERES) footprint data from the Tropical Rainfall Measuring Mission satellite between 30°S and 30°N. Each cloud object is a contiguous region of CERES footprints that have cloud-top heights below 3 km, and cloud fractions of 99%–100% (overcast type), 40%–99% (stratocumulus type), or 10%–40% (shallow cumulus type). These cloud fractions represent the fraction of ∼2 km × 2 km Visible/Infrared Scanner pixels that are cloudy within each ∼10 km × 10 km footprint. The cloud objects have effective diameters that are greater than 300 km for the overcast and stratocumulus types, and greater than 150 km for the shallow cumulus type. The Spearman rank correlation coefficient is calculated between many microphysical/optical [effective radius (re ), cloud optical depth (τ), albedo, liquid water path, and shortwave cloud radiative forcing (SW CRF)] and macrophysical [outgoing longwave radiation (OLR), cloud fraction, cloud-top temperature, longwave cloud radiative forcing (LW CRF), and sea surface temperature (SST)] properties for each of the three cloud object types. When both physical properties are of the same category (microphysical/optical or macrophysical), the magnitude of the correlation tends to be higher than when they are from different categories. The magnitudes of the correlations also change with cloud object type, with the correlations for overcast and stratocumulus cloud objects tending to be higher than those for shallow cumulus cloud objects.
Three pairs of physical properties are studied in detail, using a k-means cluster analysis: re and τ, OLR and SST, and LW CRF and SW CRF. The cluster analysis of re and τ reveals that for each of the cloud types, there is a cluster of cloud objects with negative slopes, a cluster with slopes near zero, and two clusters with positive slopes. The joint OLR and SST probability plots show that the OLR tends to decrease with SST in regions with boundary layer clouds for SSTs above approximately 298 K. When the cloud objects are split into “dry” and “moist” clusters based on the amount of precipitable water above 700 hPa, the associated OLRs increase with SST throughout the SST range for the dry clusters, but the OLRs are roughly constant with SST for the moist cluster. An analysis of the joint PDFs of LW CRF and SW CRF reveals that while the magnitudes of both LW and SW CRFs generally increase with cloud fraction, there is a cluster of overcast cloud objects that has low values of LW and SW CRF. These objects are generally located near the Sahara Desert, and may be contaminated with dust. Many of these overcast objects also appear in the re and τ cluster with negative slopes.
Abstract
Relationships between physical properties are studied for three types of marine boundary layer cloud objects identified with the Clouds and the Earth’s Radiant Energy System (CERES) footprint data from the Tropical Rainfall Measuring Mission satellite between 30°S and 30°N. Each cloud object is a contiguous region of CERES footprints that have cloud-top heights below 3 km, and cloud fractions of 99%–100% (overcast type), 40%–99% (stratocumulus type), or 10%–40% (shallow cumulus type). These cloud fractions represent the fraction of ∼2 km × 2 km Visible/Infrared Scanner pixels that are cloudy within each ∼10 km × 10 km footprint. The cloud objects have effective diameters that are greater than 300 km for the overcast and stratocumulus types, and greater than 150 km for the shallow cumulus type. The Spearman rank correlation coefficient is calculated between many microphysical/optical [effective radius (re ), cloud optical depth (τ), albedo, liquid water path, and shortwave cloud radiative forcing (SW CRF)] and macrophysical [outgoing longwave radiation (OLR), cloud fraction, cloud-top temperature, longwave cloud radiative forcing (LW CRF), and sea surface temperature (SST)] properties for each of the three cloud object types. When both physical properties are of the same category (microphysical/optical or macrophysical), the magnitude of the correlation tends to be higher than when they are from different categories. The magnitudes of the correlations also change with cloud object type, with the correlations for overcast and stratocumulus cloud objects tending to be higher than those for shallow cumulus cloud objects.
Three pairs of physical properties are studied in detail, using a k-means cluster analysis: re and τ, OLR and SST, and LW CRF and SW CRF. The cluster analysis of re and τ reveals that for each of the cloud types, there is a cluster of cloud objects with negative slopes, a cluster with slopes near zero, and two clusters with positive slopes. The joint OLR and SST probability plots show that the OLR tends to decrease with SST in regions with boundary layer clouds for SSTs above approximately 298 K. When the cloud objects are split into “dry” and “moist” clusters based on the amount of precipitable water above 700 hPa, the associated OLRs increase with SST throughout the SST range for the dry clusters, but the OLRs are roughly constant with SST for the moist cluster. An analysis of the joint PDFs of LW CRF and SW CRF reveals that while the magnitudes of both LW and SW CRFs generally increase with cloud fraction, there is a cluster of overcast cloud objects that has low values of LW and SW CRF. These objects are generally located near the Sahara Desert, and may be contaminated with dust. Many of these overcast objects also appear in the re and τ cluster with negative slopes.
Abstract
This study presents an objective classification methodology that uses Earth Observing System (EOS) satellite data to classify distinct “cloud objects” defined by cloud-system types, sizes, geographic locations, and matched large-scale environments. This analysis method identifies a cloud object as a contiguous region of the earth with a single dominant cloud-system type. It determines the shape and size of the cloud object from the satellite data and the cloud-system selection criteria. The statistical properties of the identified cloud objects are analyzed in terms of probability density functions (PDFs) based upon the Clouds and the Earth’s Radiant Energy System (CERES) Single Satellite Footprint (SSF) data.
Four distinct types of oceanic cloud objects—tropical deep convection, boundary layer cumulus, transition stratocumulus, and solid stratus—are initially identified from the CERES data collected from the Tropical Rainfall Measuring Mission (TRMM) satellite for this study. Preliminary results are presented from the analysis of the grand-mean PDFs of these four distinct types of cloud objects associated with the strong 1997/98 El Niño in March 1998 and the very weak 2000 La Niña in March 2000. A majority of the CERES footprint statistical characteristics of observed tropical deep convection are similar between the two periods in spite of the climatological contrast. There are, however, statistically significant differences in some cloud macrophysical properties such as the cloud-top height and cloud-top pressure and moderately significant differences in outgoing longwave radiation (OLR), cloud-top temperature, and ice diameter. The footprint statistical characteristics of the three observed boundary layer cloud-system types are distinctly different from one another in all cloud microphysical, macrophysical, optical properties, and radiative fluxes. The differences between the two periods are not significant for most cloud microphysical and optical properties and the top-of-the-atmosphere albedo, but are statistically significant for some cloud macrophysical properties and OLR. These characteristics of the grand-mean PDFs of cloud microphysical, macrophysical, and optical properties and radiative fluxes can be usefully compared with cloud model simulations.
Furthermore, the proportion of different boundary layer cloud types is changed between the two periods in spite of small differences in their grand-mean statistical properties. An increase of the stratus population and a decrease of the cumulus population are evident in the El Niño period compared to the very weak La Niña period. The number of the largest tropical convective cloud objects is larger during the El Niño period, but the total number of tropical convective cloud objects is approximately the same in the two periods.
Abstract
This study presents an objective classification methodology that uses Earth Observing System (EOS) satellite data to classify distinct “cloud objects” defined by cloud-system types, sizes, geographic locations, and matched large-scale environments. This analysis method identifies a cloud object as a contiguous region of the earth with a single dominant cloud-system type. It determines the shape and size of the cloud object from the satellite data and the cloud-system selection criteria. The statistical properties of the identified cloud objects are analyzed in terms of probability density functions (PDFs) based upon the Clouds and the Earth’s Radiant Energy System (CERES) Single Satellite Footprint (SSF) data.
Four distinct types of oceanic cloud objects—tropical deep convection, boundary layer cumulus, transition stratocumulus, and solid stratus—are initially identified from the CERES data collected from the Tropical Rainfall Measuring Mission (TRMM) satellite for this study. Preliminary results are presented from the analysis of the grand-mean PDFs of these four distinct types of cloud objects associated with the strong 1997/98 El Niño in March 1998 and the very weak 2000 La Niña in March 2000. A majority of the CERES footprint statistical characteristics of observed tropical deep convection are similar between the two periods in spite of the climatological contrast. There are, however, statistically significant differences in some cloud macrophysical properties such as the cloud-top height and cloud-top pressure and moderately significant differences in outgoing longwave radiation (OLR), cloud-top temperature, and ice diameter. The footprint statistical characteristics of the three observed boundary layer cloud-system types are distinctly different from one another in all cloud microphysical, macrophysical, optical properties, and radiative fluxes. The differences between the two periods are not significant for most cloud microphysical and optical properties and the top-of-the-atmosphere albedo, but are statistically significant for some cloud macrophysical properties and OLR. These characteristics of the grand-mean PDFs of cloud microphysical, macrophysical, and optical properties and radiative fluxes can be usefully compared with cloud model simulations.
Furthermore, the proportion of different boundary layer cloud types is changed between the two periods in spite of small differences in their grand-mean statistical properties. An increase of the stratus population and a decrease of the cumulus population are evident in the El Niño period compared to the very weak La Niña period. The number of the largest tropical convective cloud objects is larger during the El Niño period, but the total number of tropical convective cloud objects is approximately the same in the two periods.
Abstract
Four distinct types of cloud objects—tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus—were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects—cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus—are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006–June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies.
Abstract
Four distinct types of cloud objects—tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus—were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects—cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus—are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006–June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies.
Abstract
Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January–August 1998 are examined using the Tropical Rainfall Measuring Mission/Clouds and the Earth’s Radiant Energy System Single Scanner Footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud object size, sea surface temperature (SST), and satellite precession cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the earth composed of satellite footprints within a single dominant cloud-system type.
It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100–150 (small), 150–300 (medium), and >300 km (large), except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed toward high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precession cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This evidence supports the fixed anvil temperature hypothesis of Hartmann and Larson for the large-size category. Combined with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SST ranges, statistical characteristics of cloud microphysical properties, optical depth, and albedo are not sensitive to the SST, but those of cloud macrophysical properties are dependent upon the SST. This result is related to larger differences in large-scale dynamics among the SST ranges than among the satellite precession cycles. Frequency distributions of vertical velocity from the European Centre for Medium-Range Weather Forecasts model that is matched to each cloud object are used to further understand some of the findings in this study.
Abstract
Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January–August 1998 are examined using the Tropical Rainfall Measuring Mission/Clouds and the Earth’s Radiant Energy System Single Scanner Footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud object size, sea surface temperature (SST), and satellite precession cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the earth composed of satellite footprints within a single dominant cloud-system type.
It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100–150 (small), 150–300 (medium), and >300 km (large), except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed toward high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precession cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This evidence supports the fixed anvil temperature hypothesis of Hartmann and Larson for the large-size category. Combined with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SST ranges, statistical characteristics of cloud microphysical properties, optical depth, and albedo are not sensitive to the SST, but those of cloud macrophysical properties are dependent upon the SST. This result is related to larger differences in large-scale dynamics among the SST ranges than among the satellite precession cycles. Frequency distributions of vertical velocity from the European Centre for Medium-Range Weather Forecasts model that is matched to each cloud object are used to further understand some of the findings in this study.